Izvleček
Uspešnost učencev pri matematiki je tesno povezana z njihovim odnosom in predstavami o matematiki: eden od hudomušnih rekov, ki lahko razkriva tudi učiteljevo bolj ali manj (ne)zavedno dojemanje matematike in posledično določa njegov način poučevanja, pravi: »Matematika ni računanje, ampak umetnost o tem, kako se izogniti računanju«. Sistematično razvijanje problemskih znanj pri pouku in prikazi uporabe različnih strategij za reševanje matematičnih problemov so v praksi eden težje uresničljivih ciljev pri pouku matematike. V članku so najprej definirani nekateri osnovni pojmi teorije reševanja problemov, v nadaljevanju pa je predstavljen eden od možnih naborov strategij reševanja problemov (povzet po ameriškem združenju NCTM) z zgledi uporabe strategij in primeri preiskovalnih nalog.
Abstract
Nicomachus‘s Theorem
Students’ performance in mathematics is closely related to their attitude towards and notions of mathematics. A witty saying, which also reveals the teacher’s more or less (sub)conscious perception of mathematics and consequently determines the teacher’s teaching style, goes: »Mathematics isn’t arithmetic but the art of how to avoid arithmetic.« Systematic development of problem-solving knowledge in class and demonstrating the application of various strategies in solving mathematical problems is one mathematics objective that is harder to achieve in practice. Th e article begins by defi ning some of the basic concepts of the theory of problem-solving and continues with a presentation of possible problem-solving strategies (taken from the American association NCTM), providing examples of strategy use and of investigative tasks.