"Vsemogoči vodik" – energijski vidik bodočnosti

¹ Kemijski inštitut, Slovenija
² Inštitut Jožef Stefan, Slovenija

Vodik

Ali je zeleno gorivo?

- Brez neposrednega onesnaževanja.
- Običajna pridelava povzroča emisije CO2.
- Dekarbonizacija pri H2 mora biti v sozvočju s spreminjanjem proizvodnje H2.

The Hydrogen Colour Spectrum

COLOUR	DESCRIPTION: FEEDSTOCK		
	Grey: natural gas reforming without CCUS		
	Brown: brown coal (lignite) as feedstock		
	Blue: natural gas reforming with CCUS		
	Green: electrolysis powered through renewable electricity		
	Pink: electrolysis powered through nuclear energy		
	Turquoise: methane pyrolysis		
	Yellow: electrolysis powered through electricity from solar		
	Orange: electrolysis powered through electricity from wind		

Skladiščenje vodika

Haber – Boschev proces

Disociacijski mehanizem

- $N_2(g) + 2 \neq 2N^*$ 1.

- 5. $NH_2^* + H^* \Leftrightarrow NH_3^* + *$
- 6.

Asociacijski mehanizem

- 1. $N_2 + \frac{1}{2}H_2 + 3 \le N_2H^{**} + *$ 2. $N_2H^{**} + H^* \Leftrightarrow N_2H_2^* + 2 *$ 3. $N_2H^{**} + H^* \Leftrightarrow NH^* + N^* + H^*$ 4. $NH^* + H^* \Leftrightarrow NH_2^* + *$
- $NH_3^* \leftrightarrows NH_3 + *$

• Haber-Bosch proces

- 400 500 °C, 100 400 bar
- 1. $N_2(g) + 2 + 2H^*$ 2. $H_2(g) + 2 + 2H^*$ 3. $N^* + H^* = NH^* + *$ 4. 2 3% globalne energije za proizvodnjo amonijaka
 - Haber Bosch proces + H_2 proizvodnja
 - CO_2 emisije

Gnojila

Haber – Bosch proces – procesna shema

Years	Amount of Ammonia produced (rounded and in thousand tonnes)	Average Price of Ammonia (U.S. dollars per short ton)	World's Total Energy Consumption (Exajoules)
2017	142,000	247	566.66
2018	144,000	281	582.38
2019	142,000	232	587.43
2020	147,000	223	564.01
2021	150,000 (estimated)	510	595.15

Luis Jimenez, Haber-Bosch Process, December 14, 2022, Submitted as coursework for PH240, Stanford University, Fall 2022

Haber-Bosch proces

TOF (r. hitrost) za sintezo amonijaka kot funkcija dušikove adsorbcijske energije (400 °C, 50 bar)

J. Humpreys, R. Lan, S. Tao, Development and Recent Progress in Ammonia synthesis Catalyst for Haber-Bosch Process, Advanced energy&sustainability research, 2021, 2, 2000043

Haber – Bosch proces, prihodnost

C. Smith, A. K. Hill and L. Torrente-Murciano, *Energy Environ Sci*, 2020, **13**, 331–344.

D. Zhou et al., Sustainable ammonia production by non-thermal plasmas: Status, mechanisms and opportunities, *Chemical Engineering Journal*,

X. Chen, N. Li, Z. Kong, W. Ong, X. Zhao, Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects, *Mater. Horiz.*, 2018, 5, 9.

Zelena proizvodnja amonijaka

Elektroliza vode iz obnovljive energije Izboljšan proces proizvodnje amonijaka (dolgoročno shranjevanje) Uporaba amonijaka kot goriva

Zelena proizvodnja amonijaka

Haber-Bosch proces – induktivno gretje

FOTOKATALIZA

- Fotokataliza je trajnostna alternativa termokatalitskim reakcijam.
- Kemijske reakcije se lahko izvede pod milimi pogoji; pri teh se kot dovedeno energijo uporablja sončno energijo.

Koraki fotokatalitskega procesa:

- Fotoekscitacija,
- ločevanje naboja, ٠
- Prenos naboja na aktivna mesta ٠ fotokatalizatorja,
- Fotooksidacijske in fotoredukcijske ٠ reakcije.

Figure X: Prispevki k fotokatalizi. 10.1016/j.jphotochem.2010.05.015

FOTOKATALITSKA SINTEZA AMONIJAKA – Modeliranje na podlagi osnovnih principov Atomsko modeliranje na podlagi osnovnih principov:

- Izračun <u>osnovnih</u> stanj: Teorija gostotnega funkcionala (DFT).
- Izračun <u>vzbujenih</u> stanj : časovno odvisna DFT (TDDFT), ΔSCF metoda in metoda maksimalnega prekrivanja (MOM).

Aktivacija N₂ na:

- (TiO₂)_n (n=1-12) skupkih.
- Ru-(TiO₂)_n (n=1-12) skupkih.

Optimizirana struktura Ru-(TiO₂)₃

Optimizirana struktura (TiO₂)₆

Optimizirana struktura Ru-(TiO₂)₆

Optimizirana struktura (TiO₂)₁₂

Optimizirana struktura Ru-(TiO₂)₁₂

FOTOKATALITSKA SINTEZA AMONIJAKA– Modeliranje osnovnih principov

	· · · · · · · · · · · · · · · · · · ·
Zanemarljiv prenos elektrona (~	
0.00 e ₀)	
(osnovno	
stanje)	

Tok elektronov: od
katalizatorja do
adsorbiranega N ₂

$CO_2 CCU: Učinek H_2O na Cu/ZnO/Al_2O_3$

Je kakšen učinek na katalizatorju?

Voda povzroči:

-Zmanjšanje površine Al₂O₃

-Povečanje velikosti delcev Cu

- Pogojno povečanje velikosti delcev ZnO

Prašnikar, Pavlišič, Likozar et al., Ind. Eng. Chem. Res., 2019

CO₂ CCU: Deaktivacijski model na podlagi osnovnega mehanizma

 Reakcijska temperatura in tlak sta vključena v model deaktivacije katalizatorja preko parcialnega tlaka H₂O.

```
\frac{\boldsymbol{a}_{...}}{dt} = -a^{n_{M}}k_{H_{2}O}(f \boldsymbol{p}_{H_{2}O}^{0} a)^{g}
```


Prašnikar, Likozar, React. Chem. Eng. 2022

CO₂ CCU: Mikrokinetični model konverzije CO₂

 Najpomembnejši faktor je prekritje Cu (oranžen) s Zn :

- Razvit in optimiziran večmesten mikrokinetični model
 - Vključitev Zn in Cu aktivnih mest
- Model potrjen na neodvisnih podatkih:

CO₂(g)

носо

HCO

CO(g)

rp1

нсоо

HCOOH

H₂COOH

Prašnikar, Likozar, et al. Appl. Catal. B, 2021

CO₂ CCU: Okrepitev z uporabo membranskega reaktorja

- Test 3 različnih membran na α-aluminijev oksidnih cevkah (NIC-TNO sodelovanje):
 - APTES-PA membrana
 - SPEEK-PI membrana
 - BTESE membrana

 Programska oprema <u>razvita</u> za <u>hitro</u> mikrokinetično reševanje: **CERRES** (0D, 1D 2D problemi)

• Model razvit glede na mikrokinetiko:

Opazimo >6 višje permeance H₂O kot H₂ v primeru APTES-PA

CO_2 CCU: Eksperimenti na modelnem katalizatorju Cu/SrTiO₃(100) in bimetalu Cu-Zn MOF-74

- Cu nanešen na $SrTiO_3$ nanocevke nanokocke z izpostavljeno (100) ploskvijo.
- Glavni intermediati so HCOO* in CH₃O* kot identificirano z DFT analizo
- Prisotnost Cu v SrTiO₃ znatno zmanjša zmožnost adsorbcije CO₂ significantly (faktor 50) v prisotnosti mešanice H₂/CO₂.
- Prelivanje vodika čez SrTiO₃ povzroči nastajanje HCOO*, vendar neCH₃O*-(samo na Cu)

- Karakteriziran in ocenjen CuZn MOF-74 pripravljen z razširljivo mehanokemijsko sintezo.
- Amorfizacija poveča sintezno aktivnost MeOH.

Stolar, Prašnikar, et al. ACS Appl. Mater. Interfaces 2021

Večstopenjsko modeliranje: hidrogeniranje CO₂ Potek dela CFD simulacij

Večstopenjsko modeliranje: hidrogeniranje CO₂

Optimizacija membranskega reaktorja

