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Raziskovanje kvadratnih palindromov

Exploring Square Palindromes

Kaja Vres, dijakinja Gimnazije Ravne na Koroskem

Mentoriji: Dragomir Benko, Solski center Ravne, Gimnazija Ravne na Koroskem
Domen Vres, Univerza v Ljubljani, Fakulteta za racunalnistvo in informatiko
Simona Vres, Solski center Ravne, Gimnazija Ravne na Koroskem

IzvleCek

Kvadratni palindrom smo definirali kot par $tevil, za kateri velja, da ima eno $tevilo $tevke v obratnem vr-
stnem redu kot drugo, in to velja tudi za njuna kvadrata. V ¢lanku predstavimo, kaksni so pogoji, da je stevilo
kvadratni palindrom. Ugotovimo, da ne sme prihajati do prenosa enote pri kvadriranju stevila. Predstavimo
razli¢ne primere kvadratnih palindromov in posledice dejstva, da ne sme prihajati do prenosa enote.

Klju¢ne besede: palindromi, kvadratni palindromi, indukcija

Abstract

A square palindrome is a pair of numbers whose digits are in reverse order to the other, and the same applies to
their squares. This article describes the prerequisites for a number to be a square palindrome. When squaring
an integer, we must ensure that no units are transferred. We give several examples of square palindromes and
discuss the implications of the assumption that there must be no transfer of units.

Keywords: palindromes, square palindromes, induction

1 Uvod

V raziskovalni nalogi iz leta 2022, ki je nastala pod okriljem Gi-
mnazije Ravne na Koroskem, raziskujemo dokaj neraziskano
podro¢je matematike - kvadratne palindrome. V tem ¢lanku so
predstavljene bistvene ugotovitve, bralce pa vljudno vabimo, da
si dokaze, ki so v tem ¢lanku izpus$ceni, ogledajo v sami razi-
skovalni nalogi. Ceprav so kvadratni palindromi v literaturi, ki
preucuje palindrome, velikokrat omenjeni, so navedeni le kot
zanimivost.

1.1 Definicija kvadratnega palindroma

Palindrom je $tevilo, ki se enako prebere naprej in nazaj (si-
metri¢no $tevilo v matematiki). To pomeni, da so v njegovem
desetiskem oziroma decimalnem zapisu vse $tevke razporejene
simetri¢no (prva $tevka je enaka zadnji, druga Stevka je enaka
predzadnji ...).

Lahko ga zapisemo kot: aya,as...|... @za,a;.

V raziskovalni nalogi raziskujemo posebno vrsto $tevilskih pa-
lindromoyv, ki jo poimenujemo kvadratni palindrom. To poime-
novanje uvedemo za potrebe raziskovalnega dela in je $e nede-
finiran pojem.

Kvadratni palindrom dobimo, ko kvadriramo dve Stevili, ki
imata Stevke v obratnem vrstnem redu in sta njuna kvadrata rav-

no tako Stevili, ki imata obrnjen vrstni red $tevk. To je torej par
stevil (k, I), za kateri velja:

— 2 _
k = aya, 1@, ayay, k* = bymbm-_1by— -+ byby,

| = Qo G 3Gn1Gn, I° =boby -~ bm2b, _bym. (1)

Primer:
122 =144
212 =441 (2)

Opomba: Na zacetku se osredoto¢imo na pare Stevil, ki imajo
enako Stevilo $tevk, oziroma na $tevila, ki nimajo 0 za zadnjo
$tevko.

1.2 Metode dela

Pri raziskovanju in pisanju naloge smo kot temeljno metodo dela
uporabljali metodo matemati¢nega sklepanja in dokazovanja.

Kvadratne palindrome smo opazovali s pomodcjo generira-
nih kvadratnih palindromov, ki smo jih generirali v programu
Microsoft Excel. Grafe smo narisali s pomocjo programa Geo-
Gebra.

2 Generiranje kvadratnih palindromov

Najprej smo na podlagi opazovanja poskusali zapisati nekaj po-
gojev, ki jim morajo ustrezati $tevke, da je $tevilo kvadratni pa-
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lindrom. S pomo¢jo aplikacije Microsoft Excel smo zapisali vsa
dvo-, tri-, §tiri- in petmestna $tevila. To smo lahko storili, saj
program samostojno prepozna zaporedje in smo tako napisali
prvi dve $tevili, nato pa razsirili zaporedje na naslednje celice.
Na koncu smo s pomoc¢jo preproste funkcije A2 izra¢unali kva-
drate teh $tevil.

Funkcija, ki obrne vrstni red $tevk $tevila, je malo zahtevnejsa
in se razlikuje glede na Stevilo mest. Zapisali smo jo s pomocjo
vgrajenih funkcij QUOTIENT in MOD. Dobljena $tevila, smo
kvadrirali enako, kot smo kvadrirali prvotna stevila.

2.1 Dvomestna Stevila
Ko smo zapisali vsa dvomestna $tevila in njihove kvadrate, smo
obrnili vrstni red $tevk s funkcijo:
= QUOTIENT(4; 10) + MOD(A; 10) « 10
pri ¢emer je A Stevilo, katerega vrstni red $tevk Zelimo obrniti.

Ko smo dobljena $tevila kvadrirali, smo lahko opazovali, katera
Stevila so kvadratni palindromi. Dobljeni rezultati so prikazani
na Sliki 1. Dvomestna $tevila, ki so kvadratni palindromi, so: 11,
12,13, 21, 22, 31.
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2.2 Trimestna Stevila

Vrstni red Stevk trimestnega Stevila smo obrnili s funkcijo:

= QUOTIENT(A; 100) + MOD(QUOTIENT(A; 10); 10) « 10 +
+ MOD(A; 10) x 100,

pri ¢emer je A Stevilo, katerega vrstni red $tevk Zelimo obrniti.

Nato smo dobljena stevila ponovno kvadrirali. Rezultati so pri-
kazani na Sliki 2. Iz te je razvidno, da so trimestni kvadratni pa-
lindromi: 101, 102, 103, 111, 112, 113, 121, 122, 201, 202, 211,
212,221, 301, 311.

2.3 Stirimestna $tevila
Za obracanje vrstnega reda $tevk $tirimestnega $tevila smo upo-
rabili funkcijo:

= QUOTIENT(A; 1000) + MOD(QUOTIENT(A; 100) ;10) * 10 +
+ MOD(QUOTIENT(A; 10); 10) * 100 + MOD(4; 10) * 1000,

pri ¢emer je A Stevilo, katerega vrstni red $tevk Zelimo obrniti.
Rezultati so prikazani na Sliki 3.

Ugotovili smo, da so Stirimestna $tevila, ki so kvadratni palin-
dromi: 1001, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031,
1101,1102,1103,1111,1112,1113, 1121, 1122, 1201, 1202, 1211,
1212, 1301, 2001, 2002, 2011, 2101, 2102, 2012, 2021, 2022, 2111,
2121, 2201, 2202, 2211, 3001, 3011, 3101, 3111.

2.4 Petmestna stevila

Vrstni red Stevk petmestnega Stevila smo obrnili s funkcijo:

= QUOTIENT(A;10000) + MOD(QUOTIENT(A; 1000); 10) * 10+
+ MOD(QUOTIENT(A; 100); 10) * 100 + MOD(QUOTIENT
(A; 10); 10) * 1000 + MOD(A; 10) * 10000,

pri ¢emer je A Stevilo, katerega vrstni red $tevk Zelimo obrniti.
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Petmestnih $tevil, ki so kvadratni palindromi, je veliko (90),
zato si oglejmo le nekaj primerov, in sicer: 10001, 10002, 10003,
10011, 10012, 10013, 10021, 10022, 10031, 10101, 10102, 10103,
10111, 10112, 10113 ...

Nekaj primerov petmestnih kvadratnih palindromov je prikaza-
nih tudi na Sliki 4.
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Slika 4: Primer najdenih petmestnih kvadratnih palindromov.

2.5 Ugotovitve

Z opazovanjem pridobljenih kvadratnih palindromov smo ugo-
tovili, da so ti sestavljeni samo iz $tevk 0, 1, 2 in 3, zato lahko
sklepamo, da je to eden od pogojev, da je Stevilo kvadratni pa-
lindrom. Opazili smo tudi, da se z ve¢anjem Stevila mest veca
$tevilo kvadratnih palindromov.

3 Stevke, ki tvorijo kvadratni palindrom

V raziskovalni nalogi najprej dokazemo, da so lahko na prvem
oziroma zadnjem mestu le Stevke 1, 2 in 3. S pomocjo tega doka-

za v drugem delu potrdimo, da so te Stevke skupaj z 0 edine, ki se
lahko pojavijo v kvadratnih palindromih.

V obeh dokazih predpostavimo, da imamo par Stevil (k, ),
ki tvorita kvadratni palindrom. Njuna desetiska zapisa sta:

k = @, 1@, 180, I = AoQy - p—20p—10n,

V obeh dokazih opazujemo kvadrata teh $tevil, ki ju zaporedoma
oznacimo z x in y.

x =k? = @uly 10 @10, ?

— 2= 2
y=1°=0y01 ... Ap_20,_10p,

A3)
Eden od pogojev, da je stevilo kvadratni palindrom, je, da je na
prvem oziroma zadnjem mestu ena izmed $tevk 1, 2 ali 3, torej
velja:

ay < 3oziromaa, < 3.

4 Posplositev za celotno Stevilo

x: y:
anZ . 10211 aOZ . 10211
2a,0,_4 - 102771 2a,a, - 10?771

(an_1? + 2a,a,_,) - 10?772 (a;? + 2aya,) - 102772
(a12 + 2a2ao) -10? (an—l2 + Zanan—z) -10?
2a;,a - 101 2a,a,_q - 101

aqs? - 10° a,?-10°
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1. Ker mora biti a <3 in s tem a*<9, ne pride do prenosa enote
z enic na desetice v $tevilu x, saj je a > < 10.

2. Na zadnje mesto v $tevilu X ne vpliva nobeno drugo me-
sto, kar pomeni, da je vrednost zadnje Stevke Stevila x enaka
vrednosti a’. Ker morata biti zadnja $tevka Stevila x in prva
$tevka $tevila y enaki (da sta to kvadratna palindroma), to po-
meni, da mora imeti tudi prva $tevka $tevila y vrednost aoz.
Iz tega sledi, da drugo mesto v tem $tevilu ne sme vplivati na

prvo mesto. Da to drZi, mora biti 2a,a < 9.

3. Sedaj vemo, da velja a’ <9 in 2a,a, < 9. Torej je vrednost
predzadnje Stevke Stevila x enaka vrednosti 2a,a . Ker enice
ne vplivajo na desetice in ker je ta vrednost manjsa od deset,
je predzadnja Stevka x enaka 2a,a,. Da bosta tevili x in y kva-
dratna palindroma, morata biti tudi druga Stevka $tevila y in
predzadnja $tevka $tevila x enaki. Iz tega sledi, da mora imeti
tudi druga Stevka Stevila y vrednost 2a,a . Da to drZi, ne sme
priti do prenosa enote iz tretjega na drugo mesto Stevila y,
torej tretje mesto ne sme vplivati na drugo. Iz tega sledi, da
mora veljati (a* +2a,a,) <9.

4. Ta postopek bi lahko ponavljali, dokler ne bi prisli do prvega
mesta $tevila x in zadnjega mesta $tevila y. Z indukcijo do-
kazemo, da se na nobenem mestu ne zgodi prenos enote na
naslednje mesto.

4.1 Pogoji, ki dolocajo kvadratne palindrome

4.1.1 Potence s sodimi eksponenti

Vsota dveh sodih $tevil je sodo Stevilo in vsota dveh lihih $tevil
je sodo §tevilo. Ko mnozimo potence z enako osnovo, storimo to
tako, da osnovo prepiSemo, eksponente pa sestejemo.

Potence s sodim eksponentom (2k) bodo zato pomnozene s ko-
eficienti oblike:

a’+2 aa;. (4)
i%]itj=2k

Ker ne sme priti do prenosa enote, iz tega sledi:
l)ak2S9za0SkSn,

2)a,<3za0<k<n.

Kvadrati vseh Stevk $tevil k in [ so manjsi od 10, kar pomeni, da
mora biti njihova osnovna vrednost manjsa ali enaka 3, saj je
4* = 16 vecje od 10, medtem ko je 3* = 9 manjse od 10.

4.1.2 Potence z lihimi eksponenti

Potence z lihimi eksponenti (2k + 1) bodo pomnozene s koefi-
cienti oblike:

2 Z a;a;. (5)
i#j,i+j=2k+1
4.2 Omejitve

Pri kvadriranju moramo pomnoziti vsako $tevko z vsako $tevko
po formuli 2aa. Ker smo ugotovili, da ne sme priti do prenosa
enote v Stevilu, to pomeni, da je 2a,4,< 9.
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Iz tega lahko hitro ugotovimo nekaj pravil, ki jih ne smemo pre-
krsiti, da bo neko $tevilo kvadratni palindrom. Pri tem nam bo
v pomo¢ dejstvo, da kvadratni palindrom tvorijo le $tevke 0, 1,
21in 3.

S temi $tevkami dobimo devet moznosti (1in0,1in1,1in2,11in
3,2in0,2in2,21in3,3in 0, 3 in 3), ki nam povedo, katera $tevila
lahko soustvarjajo kvadratni palindrom in katera ne.

Iz teh moznosti smo ugotovili:

1) Stevki 2 in 3 ne smeta biti v istem Stevilu hkrati, da je le-to $e
kvadratni palindrom,

2) v $tevilu je lahko samo ena Stevka enaka 3.

4.3 Dodatne omejitve

Poleg vseh ze ugotovljenih lastnosti in omejitev lahko pri opa-
zovanju potenc v zapisu $tevila dolo¢imo dodatne omejitve. Te
se razlikujejo glede na to, ali je Stevilo mest liho ali sodo. Preden
razi$¢emo te omejitve, si poglejmo $e nekaj desetiskih zapisov in
znacilnosti, ki jih ob tem opazimo.

Trimestno stevilo:
a=a,a;ay = a, - 10% + a, - 10 + a,,

a? = a-10* + 2a, - a, - 103 + (a? + 2a, - a,) - 102 + 2a,a, - 10 + a3,
(6)

Najvisja stopnja potence Stevila 10 v zapisu trimestnega $tevila
aje?2.

Najvisja stopnja potence Stevila 10 v zapisu kvadrata danega tri-
mestnega $tevila a je 4.

Stevilo ¢lenov, ki nastopajo v zapisu kvadrata pri posamezni po-
tenci z osnovo 10 (od najvisje do najnizje stopnje), je: 1,2, 3, 2, 1.

Stirimestno $tevilo:

a=0a3a,a,0, = as - 103 + a, - 102 + a, - 10 + aq,

a®?=a%-10° + 2a, - az - 10% + (a3 + 2a, - a3) - 10*
+ (Zao - a3 + 2a1 - az) * 103
+ (a? + 2ay - ay) - 10% + 2a,a, - 10 + a3. )

Najvisja stopnja potence $tevila 10 v zapisu $tirimestnega $tevila
aje3.

Najvisja stopnja potence Stevila 10 v zapisu kvadrata danega §ti-
rimestnega Stevila a je 6.

Stevilo ¢lenov, ki nastopajo v zapisu kvadrata pri posamezni po-
tenci z osnovo 10 (od najvisje do najnizje stopnje), je: 1, 2, 3, 4,
3,2, L.

4.3.1 Pomembne ugotovitve

Prva taksna ugotovitev je, da a, vpliva le na koeficiente od poten-
ce 10" do potence 10*". NiZje potence, pri kateri ima a_vpliv, ni,
ker je najmanjsa potenca, s katero lahko mnozimo potenco 107,
potenca 10° oziroma 1.

Druga pomembna ugotovitev je, da je vsota indeksov koeficien-
tov v ¢lenih pri posamezni potenci $tevila 10 v zapisu kvadrata



Matematika v 3oli, 5t. 2, letnik 30, 2024

IZ RAZREDA

vedno enaka eksponentu potence $tevila 10. Tako je v kvadratu
Stevila a potenca 10* pomnoZena z vsoto clenov oblike a, -, pri
Cemer je i + j = k. Ce v vsoti sodeluje a?, je 2i = k.

Stevilo ¢lenov oblike a. - a; i+ j =k, s katerimi je pomnoZena
potenca 10% v zapisu kvadrata, linearno raste oziroma pada. Zato
lahko stevilo clenov oblike a, - a; i + j = k, s katerimi je pomno-
Zena potenca 10* v zapisu kvadrata $tevila a = UpQp_q - (30,00
izratunamo po formuli:

k+1; 0<k<n

f(k)—{Zn k+1 n<k<2n ; keENU{0}; neN. (8)

Najve¢ ¢lenov nastopa pri potenci 107, kjer je tudi presecisce
obeh grafov, ki sta prikazana na Sliki 5 in Sliki 6.

Ul g |atevils Hende pei 10°

L
= k [ekaponend potence 10

Slika 5: Grafi¢ni prikaz Stevila ¢lenov za devetmestno Stevilo.
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Slika 6: Grafi¢ni prikaz Stevila ¢lenov za poljuben n.

Tretja pomembna ugotovitev je prej navedena oblika vsote ¢le-
nov, s katerimi so pomnozene posamezne potence Stevila 10.

4.3.2 Kvadratni palindromi z lihim stevilom Stevk

Ce je nsodo $tevilo, potem ima osnovno $tevilo liho $tevilo mest.
Indeksi gredo pri §tevkah od n do = >+ 1 pri prvem faktorju in
od 0 do =— 1 pri drugem faktorju. To velja za produkte oblike:
24, a, Ker pa je n sodo Stevilo, je 10" potenca s sodim ekspo-
nentom, iz Cesar sledi, da se pojavi tudi ¢len ax n?

10"-(ag2 +2ana0+2an_1a1+---+2ag+1ag_1) 9)
2 2 2

Opazimo, da pri sodih n sredn)a Stevka $tevila @»? ne sme biti 3,
saj pri 10" nastopa poleg @” $e faktor 2a A, Kii ima vrednost vsaj
ena, saj je a, razlicno od nit, ker je prva stevka. Ravno tako je a,
razli¢no od nic, ker je zadnja Stevka in raziskujemo kvadratne
palindrome, ki imajo zadnjo $tevko razli¢no od 0.

Ce bi bila stevka ar = 3, bi to pomenilo, da je an2 = 9in bi pri-
§lo do prenosa enote, saj je 2a a, zagotovo 1 ali vec.

Ta ugotovitev velja samo za kvadratne palindrome z lihim $tevi-
lom §tevk, saj pri kvadratnih pa11ndrom1h s sodim §tevilom Stevk
srednje $tevke ni in ¢len ar n? pri potenci 10" ne nastopa.

5 Kvadratni palindromi, zgrajeni
iz enakih stevk

V tej nalogi smo se ukvarjali tudi s kvadratnimi palindromi, ki so
zgrajeni iz enakih $tevk. Ker smo do te tocke ugotovili, da kva-
dratne palindrome gradijo le stevke 1, 2, 3 in 0, tudi kvadratnih
palindromov, zgrajenih iz enakih $tevk, ne morejo tvoriti katere
druge Stevke, vendar niti vse od teh $tevk ne tvorijo taksnih kva-
dratnih palindromov, saj 0 in 3 ne prideta v postev.

5.1 Kvadratni palindromi, zgrajeni iz samih enic

Kljub temu da je 1 najmanjse naravno $tevilo, ob preveliki koli-
¢ini enic v $tevilu pri kvadriranju tega Stevila pride do prenosa
enote in to Stevilo posledi¢no ni kvadratni palindrom. S pomo¢-
jo aplikacije Microsoft Excel smo preverili, najve¢ koliko mest
lahko ima §tevilo, zgrajeno iz samih 1, da je to Se lahko kvadratni
palindrom. Rezultati so prikazani na Sliki 7.

1 1

11 1

i 12321

1111 1133

11 123452321

111111 1LX345654321

1113131 1234567654321
1111 123456THTESAN2L
111111113 "l23456TROATES43
MmN Nz3456790098 7654321

Slika 7: Preglednica kvadratnih palindromoy, sestavljenih iz samih enic.
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Slika 8: Kvadriranje osemmestnega in devetmestnega Stevila, sestavlje-
nega iz samih enic.
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Ugotovili smo, da ima taksno $tevilo lahko 9 mest, da je e kva-
dratni palindrom. Pri desetmestnem §tevilu namre¢ pride do
prenosa enote, saj je vsota clenov pri potenci 10" enaka 10. Po-
drobno dogajanje pri kvadriranju tak$nega devetmestnega in de-
setmestnega Stevila je razvidno na Sliki 8.

5.2 Kvadratni palindromi, sestavljeni iz samih dvojk

Ponovno smo si pomagali s programom Microsoft Excel in napi-
sali nekaj Stevil, zgrajenih iz samih 2, ter jih kvadrirali. Rezultati
so vidni na Sliki 9.

2 4

22 484

222 49284

2222 4937284

22222 493817284
222323 49382617284
2222372 4938270617284
22323322 493827150617284
222222322 49382715950617300
2222222232 4938271603950620000
21222222332 493827160483951000000

Slika 9: Preglednica kvadratnih palindromov, sestavljenih iz samih
dvojk.

Ugotovili smo, da sta taksna kvadratna palindroma samo dva,
saj pri trimestnem $tevilu Ze pride do prenosa enote, ker je vsota
¢lenov pri potenci 10° enaka 12. Podrobno dogajanje pri kvadri-

Mnoienje ftevila iz samih dvojk [N=1) = dvomastno ftavile frevilo

al all al al
2m im £ 2m im
2 2 2 2
L] 4 4
[ &) 4 4
[ s | 8 [ a |
1™ 10™ 10%1

MnoZenje Stevila iz samih dvojk [N=2) = trimestno §tevilo itevilo
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Pride do prehodall

Slika 10: Kvadriranje dvomestnega in trimestnega Stevila, sestavljene-
ga iz samih dvojk.

6 Kvadratni palindromi z razli¢nim
Stevilom mest

Posebno obravnavo si zasluzijo tudi naravna $tevila, ki se koncajo
z vsaj eno $tevko 0. Ko zamenjamo vrstni red $tevk, ima dobljeno
$tevilo v resnici v mestnem zapisu eno ali ve¢ mest manj. Kljub
temu bi lahko bila nekatera tak$na $tevila kvadratni palindromi.

. . . . o, . 2 _
ranju taksnega dvomestnega in trimestnega Stevila je razvidno 120 = 14400
na Sliki 10. 212 =441 (10)
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Slika 11: Preglednica dvomestnih in trimestnih kubi¢nih palindromov.
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Stevilo 120 je torej neke vrste kvadratni palindrom, medtem ko
Stevilo 140 ni.

140% = 19600

41% = 1681 (11)

Ko smo generirali kvadratne palindrome, smo opazili, da je kar
nekaj taksnih kvadratnih palindromov. Pri dvomestnih stevilih:
10, 20 in 30.

Pri trimestnih $tevilih: 100, 110, 120, 130, 200, 210, 220, 300, 310.

Pri $tirimestnih $tevilih so tak$ni primeri: 1000, 1010, 1020,
1030, 1100, 1110, 1120, 1130, 1200, 1210, 1220, 1300, 2000, 2010,
2020, 2100, 2110, 2120, 2200, 2210, 3000, 3010, 3100, 3110.

Kljub temu da lahko te kvadratne palindrome obravnavamo kot
kvadratne palindrome z enakim $tevilom mest, zanje ne veljajo
vsa pravila in omejitve. Tako lahko imajo tak$ni kvadratni palin-
dromi za srednjo Stevko 3. Ta omejitev zanje ne drzi, ker je pogoj
za ustreznost te omejitve, da sta prva in zadnja $tevka razli¢ni od
0, kar zagotavlja, da je 2a Ay enako 1 ali ve¢. V tem primeru to
ni zagotovljeno, torej lahko i imajo taksni palindromi za srednjo
$tevko 3.

Zakljucek

6.1 Mozne razsiritve
6.1.1 Kubicni palindromi

Podobno, kot smo iskali pogoje, da je neko stevilo kvadratni pa-
lindrom, bi lahko iskali pogoje in lastnosti kubi¢nih palindro-
mov.

Opazovali bi jih lahko s pomoc¢jo Microsoft Excela, saj je posto-
pek popolnoma enak, samo da namesto AA2 uporabimo AA3.
Rezultati tega so prikazani na Sliki 11.

Ko opazujemo kubi¢ne palindrome, opazimo, da so sestavljeni
samo iz $tevk 0, 1 in 2.

6.1.2 Vsota clenov pri isti potenci manjsa od 10

Kljub temu da smo v nalogi to¢no dolo¢ili pogoje, kdaj je neko
$tevilo kvadratni palindrom, ni lahko ugotoviti, ali vsota ¢lenov
pri isti potenci ni ve¢ja oziroma enaka 10.

Sicer smo odkrili, da se z visanjem $tevila mest viSa tudi $tevi-
lo ¢lenov pri isti potenci, vendar je tezko doloditi, katere Stevke
sestavljajo te ¢lene in kdaj se jih nabere toliko, da brez manjsih
$tevk pride do prehoda. Ce bi uspeli odkriti $e to, bi lahko to¢no
dolo¢ili, na katera mesta lahko postavimo katera $tevila in koli-
kokrat lahko uporabimo katero od stevil.

Definirali in raziskali smo dokaj neraziskano podro¢je, kvadratne palindrome. Odkrili smo klju¢ne pogoje, da

je neko $tevilo kvadratni palindrom, in sicer:

1) pri kvadriranju $tevila ne sme priti do prenosa enote,

2) sestavljen je samo iz $tevk 0, 1, 2 in 3.

Ko smo dokazali, da ne sme prihajati do prenosa enote, smo lahko iz tega dobili dva dodatna pogoja:
1) Stevki 2 in 3 ne smeta biti hkrati v istem $tevilu, da je le-to Se kvadratni palindrom,

2) v $tevilu je lahko samo ena $tevka enaka 3.

Poleg tega smo opazili, da se $tevilo kvadratnih palindromov veca z vecanjem $tevila mest.

Priloga

1. Excelova datoteka: Kvadratni palindromi.xlsx.

Objavljeno na https://www.zrss.si/strokovne-revije/matematika-v-soli/
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