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Reševanje polinomskih enačb z želvjo grafiko

Solving Polynomial Equations with Turtle Graphics

Ema Ptičak, dijakinja Škofijske gimnazije Vipava 
Tadej Vovk, dijak Škofijske gimnazije Vipava

Mentor: Alojz Grahor, Škofijska gimnazija Vipava

Izvleček

V članku predstavimo reševanje polinomskih enačb p(x) = 0 z grafično metodo, ki jo imenujemo »želvja grafi-
ka.« S to metodo lahko poiščemo rešitve polinomske enačbe poljubne stopnje, kjer je p(x) polinom z realnimi 
koeficienti. Programi dinamične geometrije omogočajo izvedbo te metode na zelo prikladen in zanimiv način. 

Ključne besede: polinomska enačba, dinamična geometrija, želvja grafika

Abstract

This paper presents the solving of polynomial equations p(x) = 0 employing the so-called turtle graphics, whi-
ch we can use to find solutions of a polynomial equation of arbitrary degree where p(x) is a polynomial with 
real coefficients. With the help of dynamic geometry software, this concept can be user-friendly and engaging.  

Keywords: polynomial equation, dynamic geometry, turtle graphics

1 Uvod

V šolskem letu 2022/23 sva avtorja v okviru Zveze za tehnično 
kulturo Slovenije (ZOTKS) sodelovala na 57. Srečanju mladih 
raziskovalcev Slovenije z raziskovalno nalogo iz matematike z 
naslovom Reševanje polinomskih enačb z geometrijo. Najin men-
tor je bil profesor Alojz Grahor, ki se mu zahvaljujeva za idejo, 
pomoč in podporo. V nalogi sva raziskovala, kako poiščemo re-
šitve enačbe p(x) = 0 kjer je p(x) polinom z realnimi koeficienti. 
Obravnavala sva reševanje s parabolami, s tako imenovano želv-
jo grafiko in z matematičnim prepogibanjem papirja. Pri meto-
di reševanja s parabolami sva uporabljala program GeoGebra, 
ki konstruira parabolo, če sta dana gorišče in premica vodnica. 
Želvja grafika omogoča določeni točki na zaslonu (ki ji rečemo 
želva), da izrisuje lomljeno črto: lahko se premakne naprej ali 
nazaj za določeno število »korakov«, v ogliščih pa se zasuka za 
določen kot. Metoda s prepogibanjem papirja deluje tako, da 
najprej iz koeficientov polinoma določimo na papirju s koordi-
natnim sistemom nekaj izbranih točk in premic ter nato s pre-
pogibanjem papirja določimo točko, ki predstavlja rešitev dane 
enačbe. V zadnjem delu naloge sva z vsemi tremi načini rešila 
starogrški problem podvojitve kocke. V članku predstavimo na-
čin reševanja polinomskih enačb z želvjo grafiko. Utemeljitve in 
dokazi so navedeni v raziskovalni nalogi (Ptičak in Vovk, 2023).

Reševanje kvadratne enačbe
1.1 Parabola

Parabolo definiramo kot množico točk v ravnini, ki so enako od-
daljene od dane točke G – gorišča in premice vodnice v. 

Če je os parabole vzporedna abscisni osi, teme v točki (r, q), go-
rišče v točki , enačba vodnice , je enačba 
parabole:

		  (y – q)2 = 2p(x – r),	 (1)

če pa je os parabole vzporedna ordinatni osi, teme v točki (r, q), 
gorišče v točki , enačba vodnice , je njena 
enačba: 

		  (x – r)2 = 2p(y – q).	 (2)

Slika 1: »Konstrukcija« parabole s prepogibanjem papirja.



IZ RAZREDA

16

Matematika v šoli, št. 2, letnik 30, 2024

Znano je, da lahko konstruiramo parabolo s prepogibanjem pa-
pirja. Ko prepognemo papir, dobimo model premice, ki mu re-
čemo pregib.

Na pravokotnem papirju izberemo točko G (gorišče) in vzpore-
dno s spodnjim robom narišemo premico vodnico. Še bolje je, da 
za premico vodnico izberemo kar spodnji rob papirja. Premico 
vodnico (ali spodnji rob papirja) prepogibamo tako, da vodnica 
poteka skozi gorišče. Praktično je najlažje, da si na premici vo-
dnici (spodnjem robu) izberemo niz točk in vsakič papir prepo-
gnemo tako, da izbrana točka npr. točka A na vodnici v pokrije 
gorišče. Na ta način naredimo veliko pregibov. To so tangente na 
parabolo z goriščem G in premico vodnico. Ogrinjače tangent 
določajo parabolo (Slika 1). Dokažimo trditev, ki pojasni kon-
strukcijo parabole (glejte Trditev 1).

Trditev 1: Pregib, ki ga dobimo tako, da premico vodnico pre-
pognemo v točko G, je tangenta na parabolo z goriščem G in 
dano premico vodnico.

Slika 3: Povezava rešitev enačbe s smernim koeficientom tangente.

Trditev 2: Dana je enačba x2 + bx + c = 0; a, b ∈ . Naj bosta 
točki A(b, 1) in D(0, c) ter parabola  z goriščem v točki A in 
premico vodnico y = –1. Skozi točko D konstruirajmo tangen-
to na parabolo . Smerni koeficient te tangente je enak rešitvi 
dane enačbe.

Dokaz: Enačba parabole  je (x – b)2 = 4y oziroma . 
Na paraboli izberemo točko . Smerni koeficient tan-
gente v točki T je enak . Nastavek za enačbo 
tangente je enak y = kx + n. Ob upoštevanju smernega koeficien-
ta k in dejstva, da točka T leži na tangenti, dobimo  
in enačbo tangente: 

.

Ker tangenta poteka skozi točko D(0, c) dobimo 
 . Ko vstavimo še t = 2k + b, dobimo enačbo:
k2 + bk +  = 0.

Sklep: Za smerni koeficient tangente smo dobili enako enačbo, 
kot je dana na začetku. Torej so rešitve dane enačbe enake smer-
nim koeficientom tangent, ki zadoščajo opisanim pogojem v Tr-
ditvi 2.

Q.E.D.

Odkriti moramo postopek, kako poiskati enačbi tistih dveh tan-
gent, ki zadoščata opisanim pogojem, in odčitati njun smerni 
koeficient. 

1.3 Reševanje kvadratne enačbe z želvjo grafiko

Želvja grafika (angl. turtle graphics) je enostaven način vektor-
skega risanja v programerskem svetu. Vključena je v enega iz-
med prvih izobraževalnih programskih jezikov Logo. Virtualni 
želvi uporabnik pove, za koliko in pod kakšnim kotom naj se 
premakne, s svojimi premiki pa »želva« ustvarja »želvjo pot«. Na 
podlagi te ideje risanja je zasnovana tudi ta metoda.

Na situacijo, ki jo prikazuje Slika 3, lahko pogledamo drugače. 
Opazujemo vse štiri označene točke A, B, C in D ter si zamislimo 

Slika 2: K dokazu, da je pregib tangenta na parabolo.

Dokaz: (Glejte Sliko 2.) Na premici vodnici izberemo točko A 
in naredimo pregib BC tako, da se točka A pokriva s točko G. Za 
vsako točko C, ki leži na premici BC, velja, da je enako oddaljena 
od točk A in G (trikotnik AGC je enakokrak). Toda le ena točka 
med njimi je enako oddaljena od premice vodnice v in točke G. 
Ta leži na presečišču pravokotnice na vodnico skozi točko A in 
premico skozi BC. Za vsako drugo točko C, ki leži na premici 
(pregibu) skozi BC velja, da njena razdalja do premice vodnice ni 
enaka razdalji do gorišča |CE| ≠ |CG|. Ker je trikotnik AGB ena-
kokrak, je premica skozi točki B in C (to je dobljeni pregib, ki je 
tangenta na parabolo) pravokotna na premico skozi točki A in G.

Q.E.D.

 1.2 Izpeljava postopka reševanja kvadratne enačbe  
z želvjo grafiko

Dana je kvadratna enačba: 
		  x2 + bx + c = 0; b, c ∈ .	 (3)

Izpeljali bomo povezavo med rešitvama enačbe (3) in smernimi 
koeficienti določenih tangent na izbrano parabolo (glejte Trditev 
2). Določimo točke: A(b, 1), B(b, 0), C(0, 0) in D(0, c) (Slika 3).
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pot, ki jo naredi »želva«, ko se sprehodi po poligonu A, B, C in 
D. V točki A je obrnjena navzdol in naredi pot dolžine 1. Nato se 
zasuka desno za kot 90° in naredi pot dolžine b. Če je b negati-
ven, naredi pot v vzvratni smeri. V točki C se zasuka desno za 90° 
in naredi pot dolžine c. (Če je c negativen, se premika vzvratno.) 
Želva se ustavi v točki D. Končni cilj je poiskati enačbo tiste pre-
mice skozi D in E, za katero velja, da je pravokotna na daljico AE 
kjer je točka E izbrana točka daljice BC. Poligonu A – B – C – D 
običajno pravimo želvja pot.

Opisani zadnji del postopka obrnemo (glejte Sliko 3). Narišemo 
premici – nosilki daljic BC in CD. Na nosilki BC si izberemo pre-
mično točko, na primer točko E. V njej naredimo pravokotnico 
na daljico AE. Nato premikamo točko E po nosilki daljice BC. Ko 
s »pravokotnico zadenemo točko D«, je smerni koeficient nosil-
ke daljice ED enak rešitvi dane enačbe. 

V točki E, ki leži na nosilki daljice BC, se »notranja« pot AED 
»odbije kot žogica pri biljardu«, a ne tako, da je vpadni kot enak 
odbojnemu, ampak sta poti AE in ED med seboj pravokotni. Ta 
način odboja smo poimenovali »odboj_90«, pa tudi celotni no-
tranji poti AED rečemo »odboj_90«.

Primer reševanja kvadratne enačbe je prikazan na Sliki 4. Rešena 
je enačba x2 + 3,5x + 3 = 0. Narišemo želvjo pot A – B – C – D 
od začetne točke A(3,5, 1) s koraki 1, 3,5 in 3. Želva konča pot v 
točki D(0, 3). Na nosilki daljice BC izberemo premično točko E 
in narišemo odboj_90 z začetkom v točki A in odbojem v točki 
E. S premikanjem točke E poiščemo takšno lego, da gre pravo-
kotnica na AE skozi točko D. Takrat odčitamo smerni koeficient 
nosilke daljice ED, ki je 1,5. Druga možnost je v točki F (smerni 
koeficient je enak 2). Rešitvi dane enačbe sta torej 1,5 in 2. 

Rešena je enačba 2x2 – x – 3 = 0. Enačbi ax2 + bx + c = 0 in 
 imata enaki rešitvi. Ker so koeficienti so-

razmerni, sta si želvji poti podobni s faktorjem raztega a, ustre-
zni premici pa vzporedni. Smerna koeficienta ustreznih premic 
sta torej enaka.

2 Reševanje kubične enačbe

Idejo reševanja kvadratne enačbe z želvjo grafiko uporabimo 
tudi pri reševanju kubične enačbe x3 + bx2 + cx + d = 0. Želva je 
v začetni točki (b, 1), potem pa gre navzdol in nadaljuje po od-
sekih 1, b, c, d. Če je koeficient pozitiven, naredi pot naprej, sicer 
pa vzvratno pot. Vsakič se zasuka za 90° v desno. Njena končna 
točka je točka (d, c). S pomočjo odbojev_90 bomo dobili rešitev, 

Slika 4: Reševanje kvadratne enačbe x2 + 3,5x + 3 = 0 z želvjo grafiko.

Na Sliki 5a je prikazano reševanje kvadratne enačbe 
x2 – 5x + 6 = 0. Najprej narišemo želvjo pot A – B – C – D. Le-ta 
se začne v točki A(–5, 1). Konstruiramo še odboj_90 in s po-
mikanjem določimo lego točke E tako, da se konec želvje poti 
pokrije z zadnjo točko odboja_90. Rešitvi sta 2 in 3 (smerna ko-
eficienta nosilk daljic ED in FD). Na Sliki 5b je prikazan primer 
rešitve splošne kvadratne enačbe ax2 + bx + c = 0. Začetek želvje 
poti A – B – C – D je v točki A(b, a), konec pa v točki D(0, c). 

Sliki 5a in 5b: Primera reševanja kvadratne enačbe.

,

,
,

,

,
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ko bomo »zadeli« končno točko želvje poti. Oglejmo si primera 
(Sliki 6a in 6b).

Slika 7: K dokazu reševanja enačbe tretje stopnje s parabolama.

Trditev 3: Rešujemo enačbo x3 + bx2 + cx + d = 0. V koordi-
natnem sistemu narišemo točki A(b, 1) in E(d, c) ter premici  
y = –1 in x = –d. Zapišemo enačbi parabol: prvo z goriščem v 
točki A s premico vodnico y = –1 ter drugo z goriščem v E in 
premico vodnico x = –d. Smerni koeficienti skupnih tangent 
obeh parabol so enaki rešitvam dane enačbe (glejte Sliko 7).

Dokaz: Enačba prve parabole (A, y = –1) je (x – b)2 = 4y, enačba 
druge (E, x = –d) pa (y – c)2 = 4dx. 

Tangenta na prvo parabolo v točki T ima enačbo y = kx – k(b + k). 

Ker je dobljena tangenta tudi tangenta na drugo parabolo, vstavi-
mo dobljeni y v enačbo druge parabole ter poenostavimo. Upo-
števamo, da je tudi t = b + 2k. Tako dobimo kvadratno enačbo:

k2x2 – 2x(k3 + bk2 + ck + 2d) + k4 + 2bk3 + (b2 + 2c) k2 + 2bck + c2 = 0.

Diskriminanta te enačbe mora biti enaka 0:

(–2(k3 + bk2 + ck + 2d) + k4)2 – 4k2(k4 + 2bk3 + (b2 + 2c) k2 +  
+ 2bck + c2) = 0,

16d(k3 + bk2 + ck + d) = 0,
k3 + bk2 + ck + d = 0.

Sklep: Za izračun smernih koeficientov skupnih tangent obeh 
parabol smo dobili enako enačbo, kot je dana enačba. To pome-
ni, da so smerni koeficienti skupnih tangent na izbrani paraboli 
enaki rešitvam dane enačbe.

Q.E.D.

Zaradi same konstrukcije tangente na parabolo sta daljici AF in 
EG pravokotni na tangento (glejte Sliko 8). Z iste slike je razviden 
potek reševanja z želvjo grafiko. Primera sta prikazana na Slikah 
6a in 6b.

3 Hornerjev algoritem

V tem poglavju preiskujemo, ali sta postopka, ki smo ju opisali v 
prejšnjih poglavjih, povezana s Hornerjevim algoritmom. Na Sli-
ki 9 je predstavljen polinom tretje stopnje p(x) = x3 + bx2 + cx + d,  

Sliki 6a in 6b: Primera reševanja kubične enačbe.

Na Sliki 6a je prikazano reševanje enačbe x3 + 7x2 + 14x + 8 = 0 z 
želvjo grafiko. Želvja pot se začne v točki A(7, 1), nato pa opravi 
pot po odsekih 1, 7, 14 in 8, vsakič se zasuče za pravi kot v desno. 
Nato konstruiramo še odboj_90 s premično točko F. Lego točke 
F določimo tako, da se končna točka odboja_90 pokrije s končno 
točko želvje poti. Rešitev dane enačbe je enaka smernemu koefi-
cientu nosilke daljice FG, to je –4. Na Sliki 6b je prikazana rešitev 
enačbe 2x3 + 3x2 – 5x – 6 = 0. Rešitev je 1,5. Zaradi sorazmernosti 
koeficientov in enake množice rešitev enačb ax3 + bx2 + cx + d = 0  
ter  0; a ≠ 0; sta želvji poti obeh enačb 
podobni.

Teoretično ozadje reševanja enačbe tretje stopnje z želvjo grafiko 
je opisano in dokazano v Trditvi 3. 
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želvja pot je A – C – D – E – B, odboj_90 pa AGHW. Izpeljimo 
povezavo med reševanjem z želvjo grafiko in Hornerjevim algo-
ritmom (Trditev 4).

Trditev 4: Naj bo leva stran enačbe p(x) = 0 polinom p(x) = x3 + 
+ bx2 + cx + d. Vrednost polinoma p(x) pri x = xo je enaka raz-
liki abscis točk B in W, kjer je točka B končna točka želvje poti, 
W pa končna točka odboja_90 iste poti.

w = x0(c – x0(b – x0)) = x0(c – bx0 + x0
2) = cx0 – bx0

2 + x0
3 =  

= cx0 – bx0
2 + x0

3 – d + d.

Ko v zadnjo enačbo vstavimo –xo namesto xo, dobimo: 

w = –cx0 – bx0
2 – x0

3 – d + d = –p(x0) + d.

Od tod pa sledi p(xo) = d – w. Torej je razlika med abscisama 
točk B in D enaka vrednosti polinoma p(xo). Hkrati smo dokazali 
tisto, kar že vemo, da je rešitev enačbe p(x) = 0 (ko točki B in D 
sovpadata) enaka smernemu koeficientu premice skozi G in H. 

Q.E.D.

Na Sliki 9 je kot primer predstavljena enačba x3 + 7x2 + 14x + 8 = 0.  
Odboj_90 se konča v točki W, ki ima absciso enako 6. Torej je 
vrednost polinoma pri xo = –3 enaka p(–3) = d – w = 2. Vrednost 
–3 je enaka smernemu koeficientu premice skozi točki G in H 
pa tudi abscisi točke G glede na absciso točke A, ker je ordinata 
točke A enaka 1, saj je vodilni koeficient polinoma p(x) enak 1.

Obenem smo dobili tudi količnik in ostanek pri deljenju poli-
noma p(x) s polinomom (x + 3). Koeficienti količnika so odseki 
odboja_90, pri čemer vzamemo za enoto dolžino prvega odse-
ka AG. Odseki so 1, 4, 2, ostanek je 2. Tako je: p(x) = (x + 3) 
(x2 + 4x + 2) + 2. 

Ko točki W in B sovpadata, dobimo, da je smerni koeficient 
premice skozi G in H rešitev dane enačbe, odboj_90 pa nam da 
koeficiente količnika. Iskanje rešitev lahko nadaljujemo kar na 
odboju_90. 

Slika 8: Reševanje enačbe tretje stopnje z želvjo grafiko.

Slika 9: K izpeljavi Hornerjevega algoritma na grafični način.

Dokaz: Naj bo x = xo dolžina daljice CG (glejte Sliko 9). Trikotni-
ki ACG, GDH in HEW so podobni. Tako velja: 

.

Opazimo, da je xo enak smernemu koeficientu premice skozi 
točki GH, to je tangensu kota DGH. Iz prejšnje trojne enačbe 
dobimo: y = x0(b – x0), w = x0(c – y):

Slika 10: Razstavljanje polinoma.

Na Sliki 10 je prikazano zaporedno iskanje ničel polinoma p(x) = 
x3 + 6x2 + 11x + 6. Želvja pot je enaka A – C – D – E – B, odboj_90 
pa poligon AFHB. Odčitamo ničlo –1 in koeficiente količnika 1, 
5, 6. Torej je:

x3 + 6x2 + 11x + 6 = (x + 1)(x2 + 5x + 6).

Ta odboj_90 AFHB vzamemo kot novo želvjo pot in narišemo 
drugi odboj_90: AGB. Smerni koeficient premice skozi BG glede 
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na novo ordinatno os HG in novo abscisno os HG je enak –2, 
količnik pa ima koeficienta 1 in 3. Tako je: 

x3 + 6x2 + 11x + 6 = (x + 1)(x + 2)(x + 3).

4 Reševanje polinomske enačbe višje stopnje

Z želvjo grafiko lahko rešujemo tudi polinomske enačbe višjih 
stopenj od 3. Oglejmo si primer enačbe četrte stopnje, potem pa 
posplošimo.

Dana naj bo enačba x4 + 6x3 + 13x2 + 12x + 4 = 0. Slika 11 prika-
zuje rešitev z želvjo grafiko.

konec želvje poti sovpade s koncem odboja_90 (na Sliki 11 je to v 
točki F). Rešitev x je enaka negativni vrednosti tangensa naklon-
skega kota nosilke daljice GH: x = –tanφ.

Utemeljitev. Trikotniki AGB, GHC, HID in IFE so podobni. 
Naj bo . V trikotniku GHC velja: , v tri-
kotniku HID: , v trikotniku IFE pa podobno 

.

Zapišemo drugače: y = x (6 – x), z = x(13 – y), 4 = x(12 – z).

Razvijmo: 4 = x(12 – z) = x(12 – x(13 – y)) = x(12 – x(13 – x(6 – x)))=
= x(12 – x(13 – 6x + x2)) = x(12 – 13x + 6x2 – x3) = 12x – 13x2 + 6x3 – x4.

Tako dobimo enačbo: x4 – 6x3 + 13x2 – 12x + 4 = 0.

V trikotniku AGB velja, da je x = tanφ. Hitro pa vidimo, da do-
bimo enačbo enako prvotni enačbi, če x nadomestimo z izra-
zom –tanφ. To je tudi vrednost, ki je enaka tangensu naklon-
skega kota nosilke daljice GH, kar je enako njenemu smernemu 
koeficientu.

Sklepamo, da bo dokaz pri splošni enačbi stopnje n potekal ena-
ko, le koeficienti bodo poljubni, nekaj nadaljnjih korakov »želve« 
pa bo analognih. Tako da lahko zapišemo:

Trditev 5: Polinomsko enačbo xn + an – 1x
n – 1 + ... + a3x

3 + a2x
2 + 

+ a1x + a0 = 0 rešujemo po naslednjih korakih:

Prvi korak: V koordinatnem sistemu narišemo pot od točke  
A(an – 1, 1) do končne točke X tako, da začne želva pot v točki A 
in se potem na vsakem koraku zasuka v desno za 90°. Če je na-
slednji koeficient pozitiven, se premakne naprej, sicer pa nazaj za 
toliko, kolikor je velikost trenutnega koeficienta. Če je koeficient 
enak 0, se samo zasuka. Želvja pot se konča v točki X na zadnjem 
koraku, ko se želva premakne za koeficient ao. 

Drugi korak: Na vsakem odseku narišemo premice, nosilke od-
sekov.

Slika 11: K dokazu, da želvja grafika deluje tudi pri enačbah višje 
stopnje.

Domneva. V primeru reševanja enačbe x4 + 6x3 + 13x2 + 12x + 
+ 4 = 0 z želvjo grafiko dobimo rešitev dane enačbe takrat, ko 

Slika 12: Prvi primer reševanja enačbe pete stopnje. Rešitev je –2.
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Tretji korak: Na premici, nosilki drugega odseka, izberemo (gi-
bljivo) točko G in jo povežemo z začetno točko A (narišemo da-
ljico AG). Nadaljujemo risanje poti odboj_90.

Četrti korak: Premikamo točko G po nosilki drugega odseka 
tako, da zadnja pravokotnica sovpada z zadnjo točko želvje poti, 
to je s točko X.

Rezultat: Smerni koeficient nosilke daljice GH je enak rešitvi 
dane enačbe.

Q.E.D.

Podobno, kot smo utemeljili reševanje kvadratne in kubične 
enačbe z vodilnim koeficientom različnim od 1, velja tudi za re-
ševanje enačbe višje stopnje.

Sliki 12 in 13 prikazujeta dve od petih rešitev enačbe 
x5 + 3x4 – 5x3 – 15x2 + 4x + 12 = 0.

Vse rešitve so: 1, –1, 2, –2 in –3. 

Hornerjev algoritem z želvjo grafiko lahko posplošimo tudi na 
polinome višje stopnje. Dokaz poteka enako. Ker se položaji 
končnih točk želvje poti in odboja_90 razlikujejo, ugotovimo 
vrednost polinoma p(xo) takole: 

Naj bo točka D končna točka želvje poti, točka W pa končna točka 
odboja_90; vektor  vektor v smeri zadnjega premika želve, vek-
tor  pa vektor od točke W do točke D. Števili d in w sta abscisi 
(pri enačbah lihe stopnje) ali ordinati (pri enačbah sode stopnje) 
točk D in W. Vrednost polinoma je enaka . 
Predznak je pozitiven, ko sta vektorja  in  enako usmerjena, 
negativen pa, ko sta ta vektorja različno usmerjena.

Slika 13: Drugi primer reševanja enačbe pete stopnje. Rešitev je 2.

Ko točki D in W sovpadeta in dobimo rešitev enačbe p(xo)= 0, 
nam dajo odseki odboja_90 koeficiente količnika. Poglejmo pri-
mere. Upoštevamo, da peljemo želvico po odboju_90 enako kot 
pri konstrukciji želvje poti. Želva začne pot v začetni točki odbo-
ja_90 in se na vogalih zasuka za 90° v desno. Odsek, po katerem 
se giblje zadenjsko, ima negativen predznak. Zapišimo primera 
s Slik 12 in 13: 

Slika 12: 
x5 + 3x4 – 5x3 – 15x2 + 4x + 12 = (x + 2)(x4 + x3 – 7x2 – x + 6).

Slika 13: 
x5 + 3x4 – 5x3 – 15x2 + 4x + 12 = (x – 2)(x4 + 5x3 + 5x2 – 5x – 6).

5 Rešitev starogrškega problema  
podvojitve kocke

Podvojitev kocke je eden izmed starogrških problemov. Za dano 
kocko s stranico a moramo poiskati stranico b nove kocke, ki 
ima dvojno prostornino b3 = 2a3.

Enačbo preoblikujemo v . Označimo količnik . 
Tako dobimo enačbo x3 = 2 oziroma x3 – 2 = 0.

Iz enačbe x3 – 2 = 0 sledi, da sta točki A(0, 1) in D(–2, 0). Želvico 
peljemo od točke A(0, 1) do točke D(–2, 0). Kjer se želva obrne 
na mestu (to je v koordinatnem izhodišču), vsakič narišemo pre-
mico v njeni smeri. Ti premici služita za konstrukcijo odboja_90 
(glejte Sliko 14). Z opisano metodo lahko rešimo tudi poljubno 
enačbo x3 – d = 0, le točka D ima koordinati D(–d, 0). 
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Zaključek

Grafična metoda reševanja polinomskih enačb je zelo zanimiva. Pred razvojem računalniških aplikacij iz di-
namične geometrije je bila težko izvedljiva. Znano je, da je Riaz (Riaz, 1962, v Ptičak in Vovk, 2023) izdelal 
praktični pripomoček. Reševanje kvadratne in kubične enačbe pa lepo poteka tudi s prepogibanjem papirja. V 
raziskovalni nalogi (Ptičak in Vovk, 2023) je obdelana tudi ta zanimiva metoda.
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Slika 14: Podvojitev kocke z želvjo grafiko.
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