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Posebna teorija relativnosti
po Bondijevo
Bondi‘s Approach to Special Relativity

dr. Tomaz Kranjc
upokojeni profesor Pedagoske fakultete Univerze v Ljubljani

Izvlecek

Vsakdo ve za teorijo relativnosti, tudi njen avtor Albert Einstein je eden najbolj znanih in popularnih znanstvenikov,
a je $e vedno slabo razumljena in tudi pri pouku fizike v srednjih Solah dijaki o njej ne izvedo veliko. Po eni strani je
privlacna, ker ljudje poznajo nenavadne pojave »kréenja dolZin«, »podalj$anja ¢asa« in »paradoksa dvoj¢kov«, vendar
razen fizikov redki te pojave tudi razumejo. Pojavljajo se tudi ugovori, da teorija nasprotuje »zdravi pameti«. Ti ugo-
vori so posledica nepopolnega ali napa¢nega razumevanja teorije.

V prispevku obravnavamo enega osnovnih pojavov posebne teorije relativnosti — razlien tek ¢asa v dveh medsebojno
gibajotih se inercialnih opazovalnih sistemih. Uvedemo pojem &etvernega prostora — prostora-Casa' — in v njem po-
jem dogodkov in procesov ter svetovnic (»Zivljenjskih &rt«), pa tudi diagrame, ki predstavljajo razlina gibanja teles.

Ponovimo osnovni naceli posebne teorije relativnosti in predstavimo »%-ra¢un« Hermanna Bondija, ki pripelje do
povezave med ¢asovnimi intervali v razli¢nih inercialnih opazovalnih sistemih. PokaZemo, da sta poljubna inercialna
opazovalna sistema »enakopravnac, tj. da velja razli¢en tek ¢asa enega opazovalca glede na drugega na enak nacdin v
obeh smereh. Rezultat dobimo 3e z uporabo Lorentzovih? transformacij in primerjamo obe poti.

Na osnovi Bondijevega £-racuna izpeljemo relativisti¢no sestevanje hitrosti.

Kljuéne besede: posebna relativnost, kvaternionski prostor, prostor-¢as, svetovne Crte, dilatacija ¢asa, Bondijev pristop
k relativnosti, Bondijev K-faktor, relativisti¢no seStevanje hitrosti, Lorentzove transformacije

Abstract

Everyone is familiar with the theory of relativity proposed by Albert Einstein, one of the most famous and popular
scientists. However, it remains poorly understood, and even in secondary school physics classes, students learn little
about it. On the one hand, it is appealing because people are familiar with the strange phenomena of »length contrac-
tion«, »time dilation«, and the »twin paradox«, but few people, aside from physicists, understand them. There are also
claims that the theory defies »common sense«. These objections stem from a limited or incorrect understanding of
the theory.

This paper explores one of the fundamental phenomena of special relativity — the different passage of time in two
mutually moving inertial frames of reference. We introduce the notion of quaternionic space (spacetime) and, within
it, the concept of events, processes, world lines, and diagrams representing the different motions of bodies.

We review the basic principles of special relativity and introduce Hermann Bondy's »k-calculus«, which establishes a
connection between time intervals in different inertial observing systems. We demonstrate that two arbitrary inertial
observing systems are »equivalent«, meaning that the difference in time passage between one observer and the other
is valid in the same way in both directions. We extend this conclusion using Lorentz transformations and compare
the two paths.

1 Opomba urednistva: V fizikalni srenji je navada, da v izrazu za Cetverni prostor »prostor-Cas« sklanjajo obe sestavini. Z vidika slovenskega pravopisa pa je prav, da sklanjamo
le drugo sestavino, saj gre za en pojem in eno besedo, zato bi npr. v rodilniku zapisali: »prostor-¢asa«.

2 Opomba urednistva: Fizikalno-matemati¢na srenja Ze vrsto let uporablja izraz »Lorentzove transformacije«, kot je zapisano v tem ¢lanku. Glede na sodobni slovenski pravo-
pis pa bi bil pravilen zapis »Lorentzeve transformacije«, ki nakazuje tudi pravilno izgovarjavo [lorenceve transformacije].
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Using the Bondi k-calculus, we derive relativistic velocity summation.

Keywords: special relativity, quaternionic space, spacetime, world lines, time dilation, Bondian approach to relativity,

Bondi K-factor, relativistic velocity summation, Lorentz transformations

1 Uvod

» Tradicionalne« in »nove« uéne metode pogosto obravnavajo iste u¢ne vsebine, vendar na raz-
liéne didakticne nacine. VEasih se posredi za predstavitev iste snovi najti preprostejo vsebinsko
razlago, ki u¢encem odpre boljsi vpogled in razumevanje, do katerega po »tradicionalni« poti
tezko pridejo. Tak je morda primer Bondijevega pristopa k posebni teoriji relativnosti.

Posebna teorija relativnost je stara Ze vel kakor sto let. Ker je ena od temeljnih in krovnih
fizikalnih (in splo$no-naravoslovnih) teorij z ogromnimi implikacijami tudi na drugih, ne-
fizikalnih podrodjih, pedagogi in znanstveniki Ze desetletja i§¢ejo nacine, kako bi jo vsaj v
temeljnih értah predstavili v Soli. In ne le v srednji, ampak celo v osnovni Soli. Tako je britanski
matematik in kozmolog, ekspert za splo¥no teorijo relativnosti, sir Hermann Bondi® zapisal

(1967):

»Zelo so me zanimali nacini, kako bi postala posebna teorija relativnosti bolj dostopna razumevanju,
in vedno sem si govoril, da je moj kon¢ni cilj, da bi postala del osnovno3solskega u¢nega programa. Kaj
je treba za ta cilj narediti, se mi je tudi vedno zdelo preprosto. Ce bi lahko kdo izumil poceni in varno
igraco - pospesevalnik, dovolj hiter, da bi se pokazali relativisti¢ni ucinki, tako da bi se lahko pet-,
Sest- ali sedemletni otroci igrali z njim, potem bi se zdela posebna teorija relativnosti povsem ocitna in
primeren predmet za osnovnosolski program.

Slisal sem, da je najboljsa pomoc za razvoj industrijsko nerazvitih dezel, ce jih preplavijo s cenenimi
mehanskimi igracami; otroci v teh dezelah potem zrastejo z mehanskimi pripravami, ki jim postanejo
véec in jih za¢nejo zanimati. Ce bi znali enako narediti v fiziki, bi 'videli veliko dlje. Zame je velik fizik
tisti, ki zna z Zepno baterijo pokazati to, za kar je bilo prej treba uporabiti ogromen pospesevalnik.
Mislim, da taka vrsta fizike potrebuje vec spodbude in ve¢ podpore.«

V svojem iskanju preproste razlage relativnostne teorije je Bondi predstavil t.i. 4-racun, s kate-
rim je lahko brez zahtevnega ra¢unanja in brez standardnih osnovnih orodij teorije relativno-
sti, predvsem Lorentzovih transformacij, priSel do nekaterih temeljnih rezultatov. Izognil se je
tudi razlaganju znamenitega poskusa Michaelsona in Morleyja, s katerim sta — zgodovinsko
gledano — postavila prvi trdni dokaz proti obstoju etra in pomembno prispevala k odkrivanju
poti do posebne teorije relativnosti.

V tem prispevku si Zelimo podobno, kakor si je Zelel/zastavil Bondi, da bi nekaj vsebine po-
sebne teorije relativnosti predstavili na dostopnejsi in laZje razumljiv nacin. Najprej (v 2. raz-
delku) predstavimo znani osnovni naleli teorije, potem (v 3. razdelku) uvedemo nazorno
orodje za predstavitev dogodkov in procesov — Zivljenjske &rte (svetovnice) v diagramih S$tiri-
razseznega prostora-Casa (ki bo pri nas le dvorazseZen). V 4. razdelku se posvetimo osrednje-
mu delu prispevka, to je razlagi, kakor jo je zasnoval Hermann Bondi s svojim %-ra¢unom, ki
pojasni razliden tek ¢asa v razli¢nih opazovalnih sistemih. Za tiste, ki Ze nekaj vedo o teoriji
relativnosti in poznajo Lorentzove transformacije, v Dodatku pokaZemo ra¢un na osnovi teh
transformacij, ki privede do enakega rezultata kakor Bondijev %-racun. Cisto na koncu (v po-
drazdelku 4.2) pokaZemo 3e, kako nenavadno se znotraj teorije relativnosti sestevajo hitrosti.

3 Znanstvenik judovskega rodu, rojen leta 1919 na Dunaju, kjer je tudi odrascal. Leta 1937 je zaradi vse hujSega antisemitizma zbeZal v Anglijo.
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2 Osnovi naceli posebne teorije relativnosti

Posebna teorija relativnost temelji na dveh nacelih (»postulatih«):

1. (nacelo relativnosti): zakoni narave imajo enako obliko v vseh inercialnih opazovalnih sistemih,

2. (invariantnost svetlobne hitrosti): hitrost svetlobe v vakuumu (c) je enaka v vseh inercialnih
opazovalnih sistemih.

Drugo nadelo pomeni tudi, da je hitrost svetlobe v vakuumu neodvisna od gibanja izvira ali
sprejemnika ali da v vakuumu noben svetlobni curek nikoli ne prehiti drugega svetlobnega
curka.

Konstantnost hitrosti svetlobe je dejstvo, potrjeno s poskusi, a je s staliS¢a nasih izkusen;j
(»zdrave pameti«) zelo nenavadna.

V zgodovinskem razvoju je svetlobna hitrost v vakuumu pri razlagi relativnosti odigrala kljuc-
no vlogo. Maxwellove enalbe elektromagnetizma, v katerih nastopa svetlobna hitrost v pra-
znem prostoru ¢, so skladne s teorijo relativnosti (so invariantne glede na Lorentzove trans-
formacije). Vendar teorija relativnosti ni del elektromagnetne teorije, ampak je §irfa in jo je
mogoce razviti neodvisno od elektromagnetne teorije. Nekateri avtorji zato menijo, da bi bilo
bolj smiselno hitrost ¢ imenovati »invariantna« hitrost ali tudi »mejna« (»limitna«) hitrost, saj
je ne more dose¢i noben masni delec (c je hitrost raz§irjanja katerega koli polja z brezmasnimi

nosilci interakcije). Velja, da nobeno telo ali signal ne moreta presedi hitrosti ¢ (Kuséer idr.,
2002).

Michelson in Morley sta svoj slavni poskus izvedla leta 1887, Einstein pa je svoj sloviti ¢lanek
»O elektrodinamiki gibajocih se teles« objavil leta 1905 (Einstein, 1905). Za invariantnost sve-
tlobne hitrosti se je torej vedelo Ze pred Einsteinom. Vendar je bil Einstein prvi, ki je iz tega
naredil sklep, da ni absolutnega ¢asa, ampak je tek ¢asa odvisen od opazovalca, in je to tudi
jasno formuliral. Invariantna hitrost (tudi hitrost svetlobe) je torej fundamentalna konstanta
narave. Kot tako jo je treba izmeriti.

3 Podobe gibanja - ¢rte-svetovnice
V naslednjem razdelku bomo potrebovali pojem prostora-¢asa ter pojem dogodkov in svetov-
nic. Zato na kratko ponovimo, kaj je to.

Eno od osnovnih orodjj teorije relativnosti je prostor, v katerem so zdruZene in prepletene tri
prostorske in ena ¢asovna dimenzija v enotnem cetvernem prostoru ali prostoru-casu, ki ima
stiri dimenzije (Kus&er idr., 2002). Vsaka tocka v prostoru-Casu predstavlja dogodek (ne glede
na to, ali se tam kaj zgodi ali ne), krivulje pa so podobe gibanja — »Zivljenjske ¢rte«, ki kazejo
zaporedje dogodkov nekega procesa in jih imenujemo svetovnice.

Zaradi enostavnosti vzemimo le eno prostorsko dimenzijo (x), tako da se gibanje odvija le
vzdolZ ene premice. V tem primeru ima prostor-¢as dve dimenziji in ga lahko nazorno pri-
kazujemo v ravnini. Namesto »golega« ¢asa v grafih raje vzamemo produkt ¢z, ki ima enako
dimenzijo kakor krajevna koordinata. To novo »¢asovno koordinato« bomo oznadiliz y,y = cz
(produkt ¢z je treba vzeti, kakor da je ena sama ¢rka) in je ne smemo meSati s kako krajev-
no koordinato! Krajevno koordinato (x) in »¢asovno koordinato« (y) lahko potem merimo v
enakih enotah, npr. v metrih ali svetlobnih sekundah. (Eni svetlobni sekundi na grafu seveda
ustreza ¢as ena seckunda.) Koli¢ino y = ¢z bomo zaradi enostavnosti imenovali kar »¢asovna
koordinata« ali celo kar »as«. Diagrami v prostoru-¢asu prikazujejo gibanje teles, tj. njihovo
lego (x) v odvisnosti od »Casa« (y).

Pokazimo nekaj primerov. Na sliki 1 je za nek izbran inercialni opazovalni sistem narisanih
nekaj svetovnic za gibanje delca. Svetovnica (a), ravna navpicna &rta, predstavlja delec, ki
miruje pri koordinati x. Njegova Zivljenjska ¢rta (svetovnica) je ¢rta, vzporedna s »¢asovno«
osjo (0sjoy), saj je njegova lega za vsak ¢as enaka x . Crta (b) prikazuje Zivljenjsko ¢rto delca,
ki se enakomerno (s konstantno hitrostjo, manjso od svetlobne hitrosti ¢) premika v smeri
pozitivne osi x. Svetovnica (c) opisuje delec, ki se v smeri pozitivne osi x zaéne gibati hitro,
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potem pa se mu gibanje upoéasnjuje. Crta (d), ki lezi pod kotom 45° glede na koordinatni osi,
kaze svetlobni signal (ki potuje s svetlobno hitrostjo ¢); pri naklonu 45° sta koordinati enaki,
x = ct, kar pomeni enakomerno nara$¢anje koordinate x s hitrostjo ¢, tj. potovanje s svetlobno
hitrostjo.

Masni delci nikoli ne morejo dosedi svetlobne hitrosti. Zato svetovnica, ki opisuje gibanje ka-
kr$nega koli masnega delca, nikoli (in na nobenem odseku) ne more dosedi strmine 45° glede
na koordinatno os (x), ampak je vedno bolj strma.

s “Cas” (y=cf) Slika 1: Primeri diagramov prostora-¢asa. Navpic¢na ¢rta (a) pred-
stavlja mirujo¢ delec, saj je koordinata (x,) enaka za vsak cas t
(oziroma za vsak »¢as« y = ct). Crta (b) je svetovnica delca, ki se
() (b) pocasi giblje s stalno hitrostjo v smeri pozitivhe koordinatne osi x. Kri-
vulja (c) kaze gibanje delca, ki se mu hitrost zmanjsuje: sprva je
naklon manjsi (hitrost je velika — koordinata x s ¢asom hitro na-
ras¢a), potem se naklon povecuije (hitrost se zmanjiuje). Crta (d),
@ (© ki lezi pod kotom 45° glede na koordinatni osi, kaze svetlobni
signal. Tu se posebej nazorno kaze prakti¢nost izbire koordinate
y = ct namesto golega ¢asa: pri naklonu 45° sta koordinati enaki,
hitro Prostor (x) X = y= .Ct' kar pa ra.vno pomeni, da. koor'dinata x narasca s hitro-
> stjo ¢, tj. se povecuje s svetlobno hitrostjo.

4 Bondijev k-racun

Ena od temeljnih ugotovitev posebne teorije relativnosti — in ena njenih temeljnih konceptu-
alnih teZav —je, da ne prostor in ne ¢as nista absolutna. Opazovalcem, ki se drug glede na dru-
gega gibljejo, ure tefejo razliéno in z enakimi merilnimi napravami namerijo razli¢ne dolZine
za isto telo. To je posledica nuje, da morajo razli¢ni opazovalci med seboj komunicirati, &e
hocejo svoje meritve primerjati. Signali za komunikacijo pa ne potujejo neskonéno hitro. Naj-
hitrej$i nadin komunikacije je s svetlobnimi (oz. elektromagnetnimi, na primer radarskimi)
curki, hitrej$e poti ni. Vendar je tudi hitrost svetlobe (¢) konéna. Sporoéila, ki si jih posiljajo
opazovalci, potrebujejo nekaj ¢asa, da pridejo od enega opazovalca do drugega. UpoStevanje
konénosti svetlobne hitrosti in dejstva, da se vsi svetlobni curki v vakuumu za vse opazovalce
vedno gibljejo enako hitro, pripelje do tega, da so »merilni metri« za razli¢ne opazovalce raz-
li¢no dolgi, in da ure razli¢nih opazovalcev teéejo razli¢no hitro.

Nase vsakdanje izku3nje nam dajejo ob&utek, da obstajata absolutni prostor in absolutni ¢as,

kar je predpostavil tudi Newton in je vgrajeno v njegovo mehaniko. Ko gledamo z zvezdami Nase vsakdanje
posejano no¢no nebo, morda ne pomislimo, da ne gledamo trenutne slike zvezdnega neba, izkugnje nam dajejo
marved podobe nebesnih teles, ki so razli¢no stare, odvisno od oddaljenosti teles oz. od ¢asa, ob&utek, da obstajata
ki ga je svetloba potrebovala za pot od njih do nas. Luna, ki jo vidimo, je bila taka pred dobro absolutni prostor in
sekundo, Sonce pred malo ve¢ kakor osmimi minutami, Proxima Centauri pred dobrimi 3ti- absolutni ¢as, kar
rimi leti. je predpostavil tudi
Lahko si mislimo, da imamo na razpolago nekega drugega posrednika informacij, ki nam Newton in je vgrajeno
informacije posreduje »takoj«, tj. z neskonéno hitrostjo. O takem svetu lahko filozofiramo. v njegovo mehaniko.

Vendar to ne spremeni fizikalne realnosti. V dejanskem svetu ni, niti informacije, ne more
potovati hitreje od svetlobe. Posledica tega je svet, kakr$nega opisuje teorija relativnosti.

Pri vsakem opazovanju, ki ga Zelimo kvantificirati, je tedaj treba upostevati, da se svetloba v
vakuumu raz§irja s konéno hitrostjo, ki je enaka natanko ¢ = 299.792.458 m/s, ne ve in ne
manj (s tem je definiran meter, enota za dolZino!), in da je vsako komuniciranje med opazo-
valci omejeno s to hitrostjo.

4.1 Kako tece cas za razli¢ne inercialne opazovalce?
Osnovna ideja Bondijevega k-rauna (Bondi, 1967) je, da obravnava ve¢ inercialnih opazoval-
cev, ki se gibljejo v eni prostorski dimenziji.
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“C‘as"(r ct) A

B izmeri
Cas ki,
signala
Slika 2: k-faktor pove, za kolikSen faktor se razlikujeta ¢asa za
A { 2o ¢ opazovalca A in B. Cas za opazovalca A ne tece enako kakor za
ANZIMETL cas [ . T . . .
Fe=t) ! Vo opazovalca B, ki se glede na A giblje s stalno hitrostjo. Na sliki
v smo na navpi¢no os nanasali »¢éasovno koordinato« y = ct, »gole-
Prostor (x)

>

Najprej vzemimo dva opazovalca, kakor je prikazano na sliki 2: opazovalec A miruje v iz-
hodi$¢u prvega inercialnega opazovalnega sistema (njegova svetovnica te€e vzdolZ navpicne
— Casovne osi), opazovalec B pa se giblje glede na A s stalno hitrostjo stran od izhodi$¢a, v
smeri pozitivne koordinatne osi x (njegova svetovnica je nekoliko nagnjena ravna ¢rta). Oba
opazovalca za merjenje ¢asa uporabljata identi¢ne ure.

Opazovalec A v nekem trenutku odda svetlobni blisk in po Casu z, $e enega. Oba bliska ujame
(zazna) opazovalec B. Svetovnici obeh bliskov sta vzporedni ravni &rti, nagnjeni za 45° glede
na koordinatni osi. Z diagrama prostora-¢asa na sliki 2 je razvidno, da izmeri opazovalec B
med bliskoma nek drug ¢asovni interval kakor opazovalec A. Ta interval zapisemo kot £z,
je neka konstanta — faktor »£-ra¢unac, ki je neodvisen od Casa.

Sistema A in B sta popolnoma enakovredna. Ce tedaj opazovalec B odda v &asovnem razmiku
z, dva svetlobna signala, ki ju sprejme opazovalec A, bo po nacelu relativnosti tudi opazovalec
A izmeril za ¢asovni interval med njima vrednost £z . Ce faktor £ ne bi bil enak v obeh smereh,
opazovalca ne bi bila enakovredna in bi lahko rekli, da je eden »bolj pri miru« kakor drugi.

Faktor % je seveda odvisen od relativne hitrosti obeh opazovalcev. (Ce miruje-
ta drug glede na drugega, sta njuni svetovnici dve navpi¢ni érti in je oditno, da mora biti

k=1)
Z diagramom prostora-¢asa lahko brez velikih tezav pridemo do odvisnosti faktorja £ od rela-
tivne hitrosti opazovalcev, £(v), in do pravila za seStevanje hitrosti.

Povezimo torej hitrost (v), s katero se giblje opazovalec B glede na opazovalca A, s faktorjem 4.

Vzemimo primer, da se opazovalca A in B v nekem trenutku srecata. V trenutku, ko se srecata,
oba nastavita svoji uri na ¢as 0 in si izmenjata svetlobni signal (glej sliko 3 in tekst pod njo).
Opazovalec A po ¢asu ¢, odda nov svetlobni signal, ki pripotuje do B-ja in ta ga isti trenutek
poslje nazaj A-ju. To dogajanje je prikazano na sliki 3. Prvi signal A-ja B-ju in odboj tega si-
gnala od B-ja nazaj do A-ja se zgodita v istem trenutku na istem mestu. Drugi signal, ki ga A
po ¢asu £, odda B-ju, in odboj tega signala od B-ja nazaj do A-ja prikazujeta rdeci svetovnici,
nagnjeni za kot 45° glede na koordinatni osi.

Poi§¢imo hitrost opazovalca B glede na A. Ta hitrost je enaka kvocientu poti, ki jo opravi B, in
asa, v katerem opravi to pot. Pois¢emo jo v nekaj korakih.

1. Med oddajo prvega signala (ob ¢asu z = 0) in drugega signala pretede za opazovalca A ¢as
,; za Qpazovalca B pa pretece za faktor % d.rl}gaéen Eas,'t]. k’oj (Prun.er!a] to s primerom
na sliki 2. Pozor: Opazovalca A in B povezujejo svetlobni bliski. Na sliki 3 sta v zacetnem

trenutku opazovalca A in B na istem mestu, na sliki 2 pa ne.)

2. Ko pretece za opazovalca B ¢as £z, (ko prejme drugi svetlobni blisk opazovalca A in ga ta-
koj odbije nazaj proti opazovalcu A), pretece za opazovalca A za faktor £ drugaden ¢as, tj.
k - kt, = k’t,. S slike 3 preberemo, da je ta ¢as ravno Cas, ko opazovalec A ponovno prejme
drugi signal (ki ga je odposlal ob svojem casu z = ¢), potem ko se je odbil od B-ja in pri-
potoval k A-ju

oy mu« Casu t; ustreza ¢asovna koordinata y, = ct,.

Faktor k je odvisen
od relativne hitrosti
obeh opazovalcev.
(Ce mirujeta drug
glede na drugega,
sta njuni svetovnici
dve navpicni crtiin
je o€itno, da mora
biti k=1.)
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3. Cas, ki pretee za opazovalca A od oddaje drugega signala (ob njegovem &asu ¢ = z,)
do ponovnega prejema tega signala, potem ko se je le-ta odbil od B-ja, je (glej sliko 3)
Kt,—t,= (k= 1)z,

4. Za opazovalca A je svetlobni curek potreboval za pot »tja in nazaj« (od A-ja do B-ja in nazaj
od B-ja do A-ja) ¢as (k> — 1)z,, za pot od A-ja do B-ja pa polovico tega ¢asa, tj. %(/(2 — 1)z, saj
je svetlobna hitrost v obeh smereh enaka.

5. Kako dale¢ od A-ja je B v trenutku, ko ga doseZe drugi svetlobni signal z A-ja? Ce bi merili
oddaljenost med A in B z radarjem (radar oddaja elektromagnetne valove, ki se razsirjajo
s svetlobno hitrostjo ¢), bi dobili za oddaljenost B-ja od A-ja v trenutku, ko opazovalca B

doseze drugi svetlobni signal, vrednost ¢ - %(/(2 -,

6. KolikSen pa je ¢as, ki ga A pripise trenutku odboja signala od B-jar Besedo »pripiSe« smo
uporabili zato, ker gre za ¢as v tocki, ki je nekje drugje kakor opazovalec A in njegova ura.
To je nekaj drugega kakor meritev Casa. Tokrat A pripie ¢as na mestu B z uro A. S slike 3
preberemo, da je as od srefanja obeh opazovalcev do trenutka, ko B prejme drugi signal,
enak vsoti ¢asa 7, ko A odda drugi signal, in ¢asa, ki ga drugi signal potrebuje, da pride do

B-ja (to je 3(k> — 1)z,); skupaj 7, + 7k — 1)z, = 76> + 1)z,

“Cas™(v) &

+ . . Slika 3: Dolocitev faktorja k. Opazovalec A v koordinatnem sis-

3£'|"""“'mm temu prostora-¢asa na sliki miruje, opazovalec B pa se glede

B na opazovalca A giblje s stalno hitrostjo. Opazovalca A in B se v

J nekem trenutku srecata (in mesto srecanja izbereta za izhodis¢e

/ koordinatnega sistema). Tedaj oba nastavita svoji uri na ¢as 0 in

A y si izmenjata svetlobni signal. Ker sta takrat na istem mestu, taka

. »izmenjava« signala ne zahteva nic casa. Po Casu t; (merjeno z

) H; :;gl.ml 4 uro A) opazovalec A odda drug signal, ki nekoliko pozneje pride

k¥, / do opazovalca B. (V diagramu ustreza Casu t, »Cas« y, = ct.) Po

/ definiciji faktorja k opazovalec B prejme drugi signal ob asu kt;

S/ po svoji uri oziroma ob »Casu«ky,. V istem trenutku, ko B sprejme

/ drugi svetlobni signal, se svetloba od njega odbije in odpotuje

nazaj k opazovalcu A. Spet je po definiciji faktorja k in ob po-

/ modi slike ocitno, da prejme opazovalec A signal, ki se je odbil

0 =t Yo / od B-ja, ob asu k- kt, = k’t, (ob »Casu« k - ky, = k’,) po srecanju

/ Prosior (x] obeh opazovalcev, merjeno z uro A. Po A-jevi meritvi je potekel

- od trenutka, ko je oddal svoj drugi signal proti B-ju, do trenutka,

.\ ko je zaznal od B-ja odbiti signal, ¢as k’t, - t, = (k> - 1)t. To je Cas,

Srefanje A in B z zadetno ki ga je drugi svetlobni signal potreboval za pot od A-ja do B-ja
izmenjavo signaloy in nazaj.

Hitrost je kvocient poti in ¢asa. Torej se opazovalec B giblje glede na opazovalca A s hitrostjo
_enet, (K2 =1
(k24 1)ty K +1

oziroma
2
vkl (1)
c k™ +1

Ce enacbo (1) »obrnemox, tj. izrazimo £ z v, dobimo odvisnost faktorja % od hitrosti »:

1+v/c
k=, .
1-v/c @)

Fizika v sali 7



Faktor % pove, kako sta medsebojno umerjeni ¢asovni skali dveh opazovalcev, ki se gibljeta
eden glede na drugega s stalno hitrostjo ».

v/c
>

0.2 0.4 0.6 0.8 1.0 Slika 4: Graf faktorja k v odvisnosti od hitrosti (oziroma od v/c).

Za tiste bralce, ki so jim Lorentzove transformacije Ze domade, v Dodatku pokazemo, da se
rezultat (2) ujema s standardnim rezultatom, ki ga dobimo z njihovo pomo¢jo. Bralec naj sam
presodi, katera pot je enostavnejsa.

4.2 Sestevanje hitrosti

Kolik3na je hitrost potnika, ki hodi s hitrostjo 6 km/h po hodniku vlaka v smeri gibanja vlaka,
ki pelje s hitrostjo 40 km/h? Seveda je hitrost potnika glede na zemljo enaka vsoti obeh hitro-
sti, to je 46 km/h. Saj vlak v eni uri prevozi 40 km, potnik v njem prehodi $e dodatnih 6 km
(vlak je zelo dolg!), kar da 46 km v eni uri. In e hodi potnik proti zadnjemu koncu vlaka, je
njegova hitrost glede na zemljo 34 km/h. Nas sklep temelji na pravilu za seStevanje hitrosti in
je intuitivno razumljiv.

Kaj pa &e bi se vlak gibal s hitrostjo 250.000 km/s in bi potnik po njem hodil s hitrostjo 100.000
km/s? Ali bi bila potnikova hitrost glede na zemljo 350.000 km/s? Seveda ne! Saj smo v 2. raz-
delku povedali, da je svetlobna hitrost »mejna« hitrost in da nobeno telo ali signal te hitrosti
ne more preseci.

Pravilo za seStevanje hitrosti, ki temelji na nasih izkus$njah in ga uporabljamo v vsakdanjem
zivljenju, ni to¢no in dobro velja le pri hitrostih, ki so majhne v primerjavi s svetlobno hitro-
stjo. Pri hitrostih, ki so primerljive s hitrostjo svetlobe, pa je pravilo za seStevanje drugaéno,
kakor smo ga navajeni.

Posebej nenavadno se seStevajo hitrosti takrat, ko je ena od njih natanko enaka ¢, svetlobni
hitrosti. Mislimo si svetlobni vir v laboratoriju, ki se giblje. Ne glede na gibanje laboratorija,
bo hitrost svetlobnega curka ostala enaka ¢ (glej razdelek 2). Drugade povedano, ¢e hitrosti
svetlobe dodamo kakr¥nokoli hitrost, bomo spet dobili le isto hitrost, tj. c.

Kaksno je torej pravilo za seStevanje poljubnih hitrosti, tudi zelo velikih?

S k-ratunom brez teZav dobimo zanimiv in netrivialen rezultat — relativisti¢no »formulo« za
seStevanje hitrosti.

Imejmo tri opazovalce A, B in C. Opazovalec B se giblje s hitrostjo v, , glede na opazovalca A,
opazovalec C se giblje s hitrostjo v, . glede na opazovalca B in opazovalec C se giblje s hitrostjo

v,. glede na opazovalca A. Povezuno njihovo merjenje Casov s faktorji £, ki se nanasajo na
dvojice opazovalcev: faktor £ za opazovalca A in B oznadimo s %, , faktor £ za opazovalca B in
C ozna¢imo s k. in za opazovalca A in Cs %, . (slika 5).

AB?

Opazovalec B izmeri za ¢asovni interval, ki v sistemu A meri 7, vrednost £, 7 ; opazovalec C
izmeri za ¢asovni interval, ki v sistemu B meri £, #,, vrednost /(BL /(AB ,); in seveda izmeri opa-
zovalec C za asovni interval, ki ima v sistemu A Vrednost Z svo]o vrednost kACt Za Casovni

interval, ki meri v sistemu A ¢, mora torej hkrati veljati £, . kAB o) = K2, 0ziroma

Rac = Rasoc: A3)

Pravilo za
sestevanje hitrosti,
ki temelji na

nasih izkusnjah in
ga uporabljamo

v vsakdanjem
Zivljenju, ni toc¢no
in dobro velja le

pri hitrostih, ki so
majhne v primerjavi
s svetlobno
hitrostjo.
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“Cas* () $

Sy
sigala

A rmeri &as £,
(o= ct) .

Prostor (x]
- Slika 5: Sestavljanje faktorjev k za tri opazovalne sisteme A, Bin C.

Toda faktorje £ znamo izraziti z medsebojnimi hitrostmi opazovalcev. To nas bo brez poseb-
nih teZav, le z nekaj ra¢unanja, pripeljalo do slovitega Einsteinovega »zakona za seStevanje
hitrosti«.

Da bo manj pisanja, ozna¢imo hitrost sistema B glede na sistem Az v, ter B, = v, /. Izraz
(2), ki smo ga dobili za Bondijev faktor £, nam potem pove, da je

ks =k, = [(L+ B)/(1-B)I" (4a)
Ce je hitrost sistema C glede na sistem B enaka vy ter zapidemo 8, = v, /¢, imamo tudi

kpe =k, = 11+ B)/(1 - B)I" (4b)
Oznadimo kon¢no 3e hitrost sistema C glede na sistem A z v, . ter pi§imo 8, = v, /¢, paimamo

Ry =ky = 1(1+ B)/(1=B)]". (4¢)

Za relacijo 3),k, = k k,,

velja seveda tudi
k3z _ ]?12'%22~

S pomodjo izrazov (4) prepiSemo gornji izraz kot

1+ﬂ3=[1+ﬂ1J(1+ﬂ2J )
l_ﬂz l_ﬂl l_ﬂz '
1+ 1+ 1 -
Zaznamujmo desno stran (5) sg = (1_2 J{l—ﬁz j Iz 1i£§ =¢ dobimo B, = % in
{nﬂl ](Hﬂzj_l
ﬂ}zq_lz 1-p \1-5, _ B+ 5 (6)
l_ﬁl l_ﬂz
PomnoZimo (6) v Stevcu in v imenovalcu s ¢ in izrazimo 8, B, in B, s hitrostmi:
_ UaptUpc ) 7
oac 140,505/ ¢ @

Namesto navadne klasi¢ne formule v, . = v, + v, smo za seStevanje hitrosti dobili relativi-
sti¢no »formulo« (7).

Da bi dobili nekaj ob¢utka za to, koliko se obe formuli razlikujeta, si spet zamislimo vlak in v
njem potnika, ki hodi proti sprednjemu koncu vlaka.

Naj najprej vlak vozi glede na zemljo s hitrostjo 0,01 ¢ (to je ogromna hitrost 3000 km/s in

Fizika v soli 9
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takega vlaka (ali rakete) ¢lovek e ni naredil). Potnik naj se sprehaja po vlaku s hitrostjo 0,001
¢ = 300 kmy/s. Klasi¢na formula bi dala za hitrost potnika glede na zemljo 3300 km/s. Relati-
visti¢ni izraz (7) nam da prakti¢no enak rezultat

v,. = (0,01 ¢ + 0,001 ¢)/(1 + 107) = 3300 km/s.

Klasi¢ni in relativisti¢ni rezultat se skorajda ne razlikujeta. Razlika med njima je 1,1 - 107 ¢
= 33 m/s. Hitrost 33 m/s = 120 km/h je v naSem vsakdanjem Zivljenju Ze kar velika hitrost, v
primerjavi s 3000 km/s ali tudi 300 km/s pa je zanemarljiva. Hitrosti 0,01 ¢ in 0,001 ¢ sta sicer
za nas ogromni, a sta majhni v primerjavi s svetlobno hitrostjo. Zato nam klasi¢na formula v
vsakdanjem Zivljenju izvrstno sluZi.

Pa vzemimo, da se vlak giblje s hitrostjo 0,5 ¢, potnik pa hodi po njem s hitrostjo 0,1 ¢. Kla-

si¢na vrednost za hitrost potnika glede na zemljo bi bila 0,6 ¢. Relativisti¢na vrednost (7) pa
bi bila tokrat

v, = (05¢+0,1¢)/(1+0,05 =0,57c.

V tem primeru bi bila razlika med pravo (relativisti¢no) in klasi¢no hitrostjo Ze pet odstotkov,
kar pa ni ve¢ zanemarljivo. V absolutni vrednosti bi dala klasi¢na formula za skoraj 8600 km/s
preveliko vrednost.

Kaj pa ¢e bi se vlak in potnik gibala vsak s hitrostjo 0,999 ¢? Tedaj bi se potnik gibal glede na
zemljo s hitrostjo, ki bi se razlikovala od svetlobne le za 5 - 107 ¢. To je v nasprotju z nasimi
klasi¢nimi predstavami, po katerih bi se potnik glede na zemljo gibal s hitrostjo 1,998 ¢. A je
rezultat smiseln, ¢e pomislimo, da se nobeno telo ne more gibati hitreje od svetlobe. Klasi¢ni
rezultat, da bi se potnik gibal glede na zemljo skoraj z dvojno svetlobno hitrostjo (z 1,998 ¢),
je seveda popolnoma napaden.

5 Sklep

Teorija relativnosti je $e vedno slabo razumljena in nedorefena tudi pri pouku fizike v sre-
dnjih Solah. Po eni strani se zdi privlaéna, ker ljudje poznajo nenavadne pojave »podalj$anja
¢asa« in »krlenja dolZin«, »paradoks dvojckov«, nenavadna potovanja na oddaljene zvezde
in $e kaj. Vendar pogosto ni pravega razumevanja teh pojavov. Pojavljajo se ugovori, ki teme-
ljijo na »zdravi pameti«, a so posledica nepopolnega razumevanja teorije.

V prispevku smo Zeleli predstaviti k-racun fizika Hermanna Bondjija, ki neposredno in po
naSem mnenju intuitivno jasno poveZe tek ¢asa v razli¢nih inercialnih opazovalnih siste-
mih. Pomembno je spoznanje, da je posebna teorija relativnosti posledica tega, da mora-
jo razli¢ni opazovalci, ki Zelijo komunicirati med seboj, uporabljati neko komunikacijsko
sredstvo. Ce bi signali potovali z neskonéno hitrostjo, ne bi bilo nobene teorije relativnost. A
najhitrejsi signali potujejo od enega opazovalca do drugega s hitrostjo svetlobe ¢, ki za pot
med njimi potrati nekaj ¢asa. Posebna teorija relativnosti to uposteva. Pri majhnih hitrostih
ni opaznih posledic. Pri hitrostih, ki niso majhne v primerjavi s svetlobno hitrostjo, pa pride
do drasti¢nih sprememb in za na$o »zdravo pamete, ki nima neposrednih izkuSenj s pojavi
pri zelo velikih hitrostih, je to (vsaj sprva) tezko razumljivo.

Poleg izratuna Bondijevega faktorja 4 smo predstavili tudi, kako se s pomo¢&jo faktorja £ v
posebni teoriji relativnosti sestevajo hitrosti.

Verjamemo, da je Bondijev 4-ra¢un mogoce uspesno predstaviti v srednji 3oli in da se z njim
razjasni marsikateri dvom glede posebne teorije relativnosti.
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Posebna teorija
relativnosti je
posledica tega,

da morajo razli¢ni
opazovalci, ki
zelijo komunicirati
med seboj,
uporabljati neko
komunikacijsko
sredstvo. Ce bi
signali potovali
zneskoncno
hitrostjo, ne bi bilo
nobene teorije
relativnosti.
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Dodatek

Podaljsanje ¢asa z Lorentzovimi transformacijami
Posebna teorija relativnosti odgovarja na vprasanje, kako teée ¢as v inercialnih opazovalnih
sistemih, ki se gibljejo eden glede na drugega in ugotavlja, da ni ne absolutnega ¢asa ne abso-

Posebna teorija
lutnega prostora.

relativnosti odgovarja
Lorentzove transformacije povezujejo krajevne in ¢asovne koordinate (oziroma dogodke, glej na vprasanje, kako

3. razdelek) v dveh inercialnih opazovalnih sistemih A in B, ki se drug glede na drugega SeEm e e
gibljeta s stalno hitrostjo (v) (Strnad, 1982). Vzamemo, da se sistem B giblje premo, tedaj
zado$¢a ena sama krajevna koordinata. Krajevno in ¢asovno koordinato v A zaznamujmo z x
inz,vB pazx‘int’ Lorentzove transformacije so (Strnad, 1982)

opazovalnih sistemih,
kise gibljejo eden
glede na drugega in

x‘ = '}/(x — Z/t), X = y(x‘ + Uz‘)’ (83) ugotaVlja, da ni ne
v =y —ox/c), £ = Y+ oxe), (8b) absolutnega ¢asa ne
zaznamovali smo y = (1 — %)%, B = v/ec. absolutnega prostora.

Zanimamo se za dva posebna dogodka: prvi dogodek (D-1) je dogodek, ko odda A prvi blisk,
drugi dogodek (D-2) je dogodek, ko B prejme drugi blisk, ki ga A odda v ¢asu £ po prvem
blisku. V 3. razdelku smo rekli, da dogodek predstavlja tocka v prostoru-¢asu, torej vsak dogo-
dek podajata prostorska in ¢asovna koordinata. Pois¢imo koordinate dogodkov D-1 in D-2 v
koordinatnem sistemu A in v koordinatnem sistemu B.

Ob prvem dogodku izhodi$éi koordinatnih sistemov A in B sovpadata in v obeh sistemih tedaj
naravnajo ure na ¢as 0. Torej sta v sistemu A koordinati dogodka D-1

x, =0,
t, =0
in tudi v sistemu B sta koordinati prvega dogodka
x =0,
1, =0.

Drugi dogodek je sprejem drugega bliska v izhodi$¢u sistema B. Kje je B (merjeno v sistemu
A), ko prejme drugi blisk? Od prvega bliska ob ¢asu 0 do drugega bliska ob ¢asu 7 se sistem B
oddalji za razdaljo v¢, 0od A, v je hitrost, s katero se opazovalec B giblje glede na A. Opazovalec
A ob (svojem) ¢asu ¢ odda drugi blisk, ki potuje s hitrostjo ¢ in dohiti B po ¢asu 7 (ki ga za
zdaj $e ne poznamo). V ¢asu 7 naredi B $e dodatno pot v7. Razdalja B od lege A v trenutku, ko
B ujame drugi blisk, je torej po eni strani ¢7, po drugi strani vz, + v7. 1z ¢t = v(¢, + 7) dobimo

t=ut/(c—v) = Bt/(1-P), B= v/
Torej so koordinate drugega dogodka

x, =ct= P /(1-P),
. t,=t,+ =1+ Bt/1-p) =1/(1-P)
in
x, = 0 (saj B sprejme blisk tam, kjer je),
¢," = 7 (ta Cas i3¢emo).
Oznacimo s 2,"=1¢,"— ¢ “ ¢as, ki v sistemu B pretee med oddajo prvega bliska in prejemom
drugega bliska. Prva iz Lorentzovih transformacij (8b) pove, da je

=y, —vx /) =0,
sajjez, = 0inx, = 0,in daje
t, =y, —vx)c?) = Yt /(1 = B) — (/) Bet /(L= B)] = (1 + B) = 2,[(1 + B)/(1 - B)]"™.
Torej je

t=1t"—t =1 [(1 + B)/(1-P)"=ke,

Spet smo dobili Bondijev rezultat (2) oziroma faktor £

k= 10+ BB

Katera pot je lazjar
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