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Posebna teorija relativnosti  
po Bondijevo
Bondi‘s Approach to Special Relativity

dr. Tomaž Kranjc
upokojeni profesor Pedagoške fakultete Univerze v Ljubljani

Izvleček
Vsakdo ve za teorijo relativnosti, tudi njen avtor Albert Einstein je eden najbolj znanih in popularnih znanstvenikov, 
a je še vedno slabo razumljena in tudi pri pouku fizike v srednjih šolah dijaki o njej ne izvedo veliko. Po eni strani je 
privlačna, ker ljudje poznajo nenavadne pojave »krčenja dolžin«, »podaljšanja časa« in »paradoksa dvojčkov«, vendar 
razen fizikov redki te pojave tudi razumejo. Pojavljajo se tudi ugovori, da teorija nasprotuje »zdravi pameti«. Ti ugo-
vori so posledica nepopolnega ali napačnega razumevanja teorije.

V prispevku obravnavamo enega osnovnih pojavov posebne teorije relativnosti – različen tek časa v dveh medsebojno 
gibajočih se inercialnih opazovalnih sistemih. Uvedemo pojem četvernega prostora – prostora-časa1 – in v njem po-
jem dogodkov in procesov ter svetovnic (»življenjskih črt«), pa tudi diagrame, ki predstavljajo različna gibanja teles. 

Ponovimo osnovni načeli posebne teorije relativnosti in predstavimo »k-račun« Hermanna Bondija, ki pripelje do 
povezave med časovnimi intervali v različnih inercialnih opazovalnih sistemih. Pokažemo, da sta poljubna inercialna 
opazovalna sistema »enakopravna«, tj. da velja različen tek časa enega opazovalca glede na drugega na enak način v 
obeh smereh. Rezultat dobimo še z uporabo Lorentzovih2 transformacij in primerjamo obe poti. 

Na osnovi Bondijevega k-računa izpeljemo relativistično seštevanje hitrosti. 

Ključne besede: posebna relativnost, kvaternionski prostor, prostor-čas, svetovne črte, dilatacija časa, Bondijev pristop 
k relativnosti, Bondijev K-faktor, relativistično seštevanje hitrosti, Lorentzove transformacije

Abstract
Everyone is familiar with the theory of relativity proposed by Albert Einstein, one of the most famous and popular 
scientists. However, it remains poorly understood, and even in secondary school physics classes, students learn little 
about it. On the one hand, it is appealing because people are familiar with the strange phenomena of »length contrac-
tion«, »time dilation«, and the »twin paradox«, but few people, aside from physicists, understand them. There are also 
claims that the theory defies »common sense«. These objections stem from a limited or incorrect understanding of 
the theory.

This paper explores one of the fundamental phenomena of special relativity – the different passage of time in two 
mutually moving inertial frames of reference. We introduce the notion of quaternionic space (spacetime) and, within 
it, the concept of events, processes, world lines, and diagrams representing the different motions of bodies. 

We review the basic principles of special relativity and introduce Hermann Bondy‘s »k-calculus«, which establishes a 
connection between time intervals in different inertial observing systems. We demonstrate that two arbitrary inertial 
observing systems are »equivalent«, meaning that the difference in time passage between one observer and the other 
is valid in the same way in both directions. We extend this conclusion using Lorentz transformations and compare 
the two paths. 

1	 Opomba uredništva: V fizikalni srenji je navada, da v izrazu za četverni prostor »prostor-čas« sklanjajo obe sestavini. Z vidika slovenskega pravopisa pa je prav, da sklanjamo 
le drugo sestavino, saj gre za en pojem in eno besedo, zato bi npr. v rodilniku zapisali: »prostor-časa«.

2	 Opomba uredništva: Fizikalno-matematična srenja že vrsto let uporablja izraz »Lorentzove transformacije«, kot je zapisano v tem članku. Glede na sodobni slovenski pravo-
pis pa bi bil pravilen zapis »Lorentzeve transformacije«, ki nakazuje tudi pravilno izgovarjavo [lorenčeve transformacije].
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1	 Uvod 
»Tradicionalne« in »nove« učne metode pogosto obravnavajo iste učne vsebine, vendar na raz-
lične didaktične načine. Včasih se posreči za predstavitev iste snovi najti preprostejšo vsebinsko 
razlago, ki učencem odpre boljši vpogled in razumevanje, do katerega po »tradicionalni« poti 
težko pridejo. Tak je morda primer Bondijevega pristopa k posebni teoriji relativnosti. 

Posebna teorija relativnost je stara že več kakor sto let. Ker je ena od temeljnih in krovnih 
fizikalnih (in splošno-naravoslovnih) teorij z ogromnimi implikacijami tudi na drugih, ne-
fizikalnih področjih, pedagogi in znanstveniki že desetletja iščejo načine, kako bi jo vsaj v 
temeljnih črtah predstavili v šoli. In ne le v srednji, ampak celo v osnovni šoli. Tako je britanski 
matematik in kozmolog, ekspert za splošno teorijo relativnosti, sir Hermann Bondi3 zapisal 
(1967): 

3	 Znanstvenik judovskega rodu, rojen leta 1919 na Dunaju, kjer je tudi odraščal. Leta 1937 je zaradi vse hujšega antisemitizma zbežal v Anglijo.

Using the Bondi k-calculus, we derive relativistic velocity summation.

Keywords: special relativity, quaternionic space, spacetime, world lines, time dilation, Bondian approach to relativity, 
Bondi K-factor, relativistic velocity summation, Lorentz transformations

»Zelo so me zanimali načini, kako bi postala posebna teorija relativnosti bolj dostopna razumevanju, 
in vedno sem si govoril, da je moj končni cilj, da bi postala del osnovnošolskega učnega programa. Kaj 
je treba za ta cilj narediti, se mi je tudi vedno zdelo preprosto. Če bi lahko kdo izumil poceni in varno 
igračo – pospeševalnik, dovolj hiter, da bi se pokazali relativistični učinki, tako da bi se lahko pet-, 
šest- ali sedemletni otroci igrali z njim, potem bi se zdela posebna teorija relativnosti povsem očitna in 
primeren predmet za osnovnošolski program. 

Slišal sem, da je najboljša pomoč za razvoj industrijsko nerazvitih dežel, če jih preplavijo s cenenimi 
mehanskimi igračami; otroci v teh deželah potem zrastejo z mehanskimi pripravami, ki jim postanejo 
všeč in jih začnejo zanimati. Če bi znali enako narediti v fiziki, bi 'videli veliko dlje'. Zame je velik fizik 
tisti, ki zna z žepno baterijo pokazati to, za kar je bilo prej treba uporabiti ogromen pospeševalnik. 
Mislim, da taka vrsta fizike potrebuje več spodbude in več podpore.« 

V svojem iskanju preproste razlage relativnostne teorije je Bondi predstavil t.i. k-račun, s kate-
rim je lahko brez zahtevnega računanja in brez standardnih osnovnih orodij teorije relativno-
sti, predvsem Lorentzovih transformacij, prišel do nekaterih temeljnih rezultatov. Izognil se je 
tudi razlaganju znamenitega poskusa Michaelsona in Morleyja, s katerim sta – zgodovinsko 
gledano – postavila prvi trdni dokaz proti obstoju etra in pomembno prispevala k odkrivanju 
poti do posebne teorije relativnosti.

V tem prispevku si želimo podobno, kakor si je želel/zastavil Bondi, da bi nekaj vsebine po-
sebne teorije relativnosti predstavili na dostopnejši in lažje razumljiv način. Najprej (v 2. raz-
delku) predstavimo znani osnovni načeli teorije, potem (v 3. razdelku) uvedemo nazorno 
orodje za predstavitev dogodkov in procesov – življenjske črte (svetovnice) v diagramih štiri-
razsežnega prostora-časa (ki bo pri nas le dvorazsežen). V 4. razdelku se posvetimo osrednje-
mu delu prispevka, to je razlagi, kakor jo je zasnoval Hermann Bondi s svojim k-računom, ki 
pojasni različen tek časa v različnih opazovalnih sistemih. Za tiste, ki že nekaj vedo o teoriji 
relativnosti in poznajo Lorentzove transformacije, v Dodatku pokažemo račun na osnovi teh 
transformacij, ki privede do enakega rezultata kakor Bondijev k-račun. Čisto na koncu (v po-
drazdelku 4.2) pokažemo še, kako nenavadno se znotraj teorije relativnosti seštevajo hitrosti.

Včasih se posreči za 
predstavitev iste snovi 
najti preprostejšo 
vsebinsko razlago, 
ki učencem odpre 
boljši vpogled 
in razumevanje, 
do katerega po 
»tradicionalni« poti 
težko pridejo. 
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2	 Osnovi načeli posebne teorije relativnosti 

Posebna teorija relativnost temelji na dveh načelih (»postulatih«): 
1.	 (načelo relativnosti): zakoni narave imajo enako obliko v vseh inercialnih opazovalnih sistemih, 
2.	 (invariantnost svetlobne hitrosti): hitrost svetlobe v vakuumu (c) je enaka v vseh inercialnih  

opazovalnih sistemih. 

Drugo načelo pomeni tudi, da je hitrost svetlobe v vakuumu neodvisna od gibanja izvira ali 
sprejemnika ali da v vakuumu noben svetlobni curek nikoli ne prehiti drugega svetlobnega 
curka.

Konstantnost hitrosti svetlobe je dejstvo, potrjeno s poskusi, a je s stališča naših izkušenj 
(»zdrave pameti«) zelo nenavadna. 

V zgodovinskem razvoju je svetlobna hitrost v vakuumu pri razlagi relativnosti odigrala ključ-
no vlogo. Maxwellove enačbe elektromagnetizma, v katerih nastopa svetlobna hitrost v pra-
znem prostoru c, so skladne s teorijo relativnosti (so invariantne glede na Lorentzove trans-
formacije). Vendar teorija relativnosti ni del elektromagnetne teorije, ampak je širša in jo je 
mogoče razviti neodvisno od elektromagnetne teorije. Nekateri avtorji zato menijo, da bi bilo 
bolj smiselno hitrost c imenovati »invariantna« hitrost ali tudi »mejna« (»limitna«) hitrost, saj 
je ne more doseči noben masni delec (c je hitrost razširjanja katerega koli polja z brezmasnimi 
nosilci interakcije). Velja, da nobeno telo ali signal ne moreta preseči hitrosti c (Kuščer idr., 
2002).

Michelson in Morley sta svoj slavni poskus izvedla leta 1887, Einstein pa je svoj sloviti članek 
»O elektrodinamiki gibajočih se teles« objavil leta 1905 (Einstein, 1905). Za invariantnost sve-
tlobne hitrosti se je torej vedelo že pred Einsteinom. Vendar je bil Einstein prvi, ki je iz tega 
naredil sklep, da ni absolutnega časa, ampak je tek časa odvisen od opazovalca, in je to tudi 
jasno formuliral. Invariantna hitrost (tudi hitrost svetlobe) je torej fundamentalna konstanta 
narave. Kot tako jo je treba izmeriti.

3	 Podobe gibanja – črte-svetovnice 
V naslednjem razdelku bomo potrebovali pojem prostora-časa ter pojem dogodkov in svetov-
nic. Zato na kratko ponovimo, kaj je to.

Eno od osnovnih orodij teorije relativnosti je prostor, v katerem so združene in prepletene tri 
prostorske in ena časovna dimenzija v enotnem četvernem prostoru ali prostoru-času, ki ima 
štiri dimenzije (Kuščer idr., 2002). Vsaka točka v prostoru-času predstavlja dogodek (ne glede 
na to, ali se tam kaj zgodi ali ne), krivulje pa so podobe gibanja – »življenjske črte«, ki kažejo 
zaporedje dogodkov nekega procesa in jih imenujemo svetovnice.

Zaradi enostavnosti vzemimo le eno prostorsko dimenzijo (x), tako da se gibanje odvija le 
vzdolž ene premice. V tem primeru ima prostor-čas dve dimenziji in ga lahko nazorno pri-
kazujemo v ravnini. Namesto »golega« časa v grafih raje vzamemo produkt ct, ki ima enako 
dimenzijo kakor krajevna koordinata. To novo »časovno koordinato« bomo označili z y, y = ct  
(produkt ct je treba vzeti, kakor da je ena sama črka) in je ne smemo mešati s kako krajev-
no koordinato! Krajevno koordinato (x) in »časovno koordinato« (y) lahko potem merimo v 
enakih enotah, npr. v metrih ali svetlobnih sekundah. (Eni svetlobni sekundi na grafu seveda 
ustreza čas ena sekunda.) Količino y ≡ ct bomo zaradi enostavnosti imenovali kar »časovna 
koordinata« ali celo kar »čas«. Diagrami v prostoru-času prikazujejo gibanje teles, tj. njihovo 
lego (x) v odvisnosti od »časa« (y). 

Pokažimo nekaj primerov. Na sliki 1 je za nek izbran inercialni opazovalni sistem narisanih 
nekaj svetovnic za gibanje delca. Svetovnica (a), ravna navpična črta, predstavlja delec, ki 
miruje pri koordinati x

0. Njegova življenjska črta (svetovnica) je črta, vzporedna s »časovno« 
osjo (osjo y), saj je njegova lega za vsak čas enaka x0. Črta (b) prikazuje življenjsko črto delca, 
ki se enakomerno (s konstantno hitrostjo, manjšo od svetlobne hitrosti c) premika v smeri 
pozitivne osi x. Svetovnica (c) opisuje delec, ki se v smeri pozitivne osi x začne gibati hitro, 
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potem pa se mu gibanje upočasnjuje. Črta (d), ki leži pod kotom 45° glede na koordinatni osi, 
kaže svetlobni signal (ki potuje s svetlobno hitrostjo c); pri naklonu 45° sta koordinati enaki, 
x = ct, kar pomeni enakomerno naraščanje koordinate x s hitrostjo c, tj. potovanje s svetlobno 
hitrostjo.

Masni delci nikoli ne morejo doseči svetlobne hitrosti. Zato svetovnica, ki opisuje gibanje ka-
kršnega koli masnega delca, nikoli (in na nobenem odseku) ne more doseči strmine 45° glede 
na koordinatno os (x), ampak je vedno bolj strma. 

4	 Bondijev k-račun 
Ena od temeljnih ugotovitev posebne teorije relativnosti – in ena njenih temeljnih konceptu-
alnih težav – je, da ne prostor in ne čas nista absolutna. Opazovalcem, ki se drug glede na dru-
gega gibljejo, ure tečejo različno in z enakimi merilnimi napravami namerijo različne dolžine 
za isto telo. To je posledica nuje, da morajo različni opazovalci med seboj komunicirati, če 
hočejo svoje meritve primerjati. Signali za komunikacijo pa ne potujejo neskončno hitro. Naj-
hitrejši način komunikacije je s svetlobnimi (oz. elektromagnetnimi, na primer radarskimi) 
curki, hitrejše poti ni. Vendar je tudi hitrost svetlobe (c) končna. Sporočila, ki si jih pošiljajo 
opazovalci, potrebujejo nekaj časa, da pridejo od enega opazovalca do drugega. Upoštevanje 
končnosti svetlobne hitrosti in dejstva, da se vsi svetlobni curki v vakuumu za vse opazovalce 
vedno gibljejo enako hitro, pripelje do tega, da so »merilni metri« za različne opazovalce raz-
lično dolgi, in da ure različnih opazovalcev tečejo različno hitro. 

Naše vsakdanje izkušnje nam dajejo občutek, da obstajata absolutni prostor in absolutni čas, 
kar je predpostavil tudi Newton in je vgrajeno v njegovo mehaniko. Ko gledamo z zvezdami 
posejano nočno nebo, morda ne pomislimo, da ne gledamo trenutne slike zvezdnega neba, 
marveč podobe nebesnih teles, ki so različno stare, odvisno od oddaljenosti teles oz. od časa, 
ki ga je svetloba potrebovala za pot od njih do nas. Luna, ki jo vidimo, je bila taka pred dobro 
sekundo, Sonce pred malo več kakor osmimi minutami, Proxima Centauri pred dobrimi šti-
rimi leti. 

Lahko si mislimo, da imamo na razpolago nekega drugega posrednika informacij, ki nam 
informacije posreduje »takoj«, tj. z neskončno hitrostjo. O takem svetu lahko filozofiramo. 
Vendar to ne spremeni fizikalne realnosti. V dejanskem svetu nič, niti informacije, ne more 
potovati hitreje od svetlobe. Posledica tega je svet, kakršnega opisuje teorija relativnosti. 

Pri vsakem opazovanju, ki ga želimo kvantificirati, je tedaj treba upoštevati, da se svetloba v 
vakuumu razširja s končno hitrostjo, ki je enaka natanko c = 299.792.458 m/s, ne več in ne 
manj (s tem je definiran meter, enota za dolžino!), in da je vsako komuniciranje med opazo-
valci omejeno s to hitrostjo.

4.1	 Kako teče čas za različne inercialne opazovalce? 
Osnovna ideja Bondijevega k-računa (Bondi, 1967) je, da obravnava več inercialnih opazoval-
cev, ki se gibljejo v eni prostorski dimenziji.

Slika 1: Primeri diagramov prostora-časa. Navpična črta (a) pred-
stavlja mirujoč delec, saj je koordinata (x0) enaka za vsak čas t 
(oziroma za vsak »čas« y = ct). Črta (b) je svetovnica delca, ki se 
giblje s stalno hitrostjo v smeri pozitivne koordinatne osi x. Kri-
vulja (c) kaže gibanje delca, ki se mu hitrost zmanjšuje: sprva je 
naklon manjši (hitrost je velika – koordinata x s časom hitro na-
rašča), potem se naklon povečuje (hitrost se zmanjšuje). Črta (d), 
ki leži pod kotom 45° glede na koordinatni osi, kaže svetlobni 
signal. Tu se posebej nazorno kaže praktičnost izbire koordinate 
y = ct namesto golega časa: pri naklonu 45° sta koordinati enaki,  
x = y ≡ ct, kar pa ravno pomeni, da koordinata x narašča s hitro-
stjo c, tj. se povečuje s svetlobno hitrostjo. 

Naše vsakdanje 
izkušnje nam dajejo 
občutek, da obstajata 
absolutni prostor in 
absolutni čas, kar 
je predpostavil tudi 
Newton in je vgrajeno 
v njegovo mehaniko. 
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Najprej vzemimo dva opazovalca, kakor je prikazano na sliki 2: opazovalec A miruje v iz-
hodišču prvega inercialnega opazovalnega sistema (njegova svetovnica teče vzdolž navpične 
– časovne osi), opazovalec B pa se giblje glede na A s stalno hitrostjo stran od izhodišča, v 
smeri pozitivne koordinatne osi x (njegova svetovnica je nekoliko nagnjena ravna črta). Oba 
opazovalca za merjenje časa uporabljata identične ure. 

Opazovalec A v nekem trenutku odda svetlobni blisk in po času t0 še enega. Oba bliska ujame 
(zazna) opazovalec B. Svetovnici obeh bliskov sta vzporedni ravni črti, nagnjeni za 45° glede 
na koordinatni osi. Z diagrama prostora-časa na sliki 2 je razvidno, da izmeri opazovalec B 
med bliskoma nek drug časovni interval kakor opazovalec A. Ta interval zapišemo kot kt0, k 
je neka konstanta – faktor »k-računa«, ki je neodvisen od časa. 

Sistema A in B sta popolnoma enakovredna. Če tedaj opazovalec B odda v časovnem razmiku 
t0 dva svetlobna signala, ki ju sprejme opazovalec A, bo po načelu relativnosti tudi opazovalec 
A izmeril za časovni interval med njima vrednost kt0. Če faktor k ne bi bil enak v obeh smereh, 
opazovalca ne bi bila enakovredna in bi lahko rekli, da je eden »bolj pri miru« kakor drugi. 

Faktor k je seveda odvisen od relativne hitrosti obeh opazovalcev. (Če miruje-
ta drug glede na drugega, sta njuni svetovnici dve navpični črti in je očitno, da mora biti  
k = 1.) 

Z diagramom prostora-časa lahko brez velikih težav pridemo do odvisnosti faktorja k od rela-
tivne hitrosti opazovalcev, k(v), in do pravila za seštevanje hitrosti. 

Povežimo torej hitrost (v), s katero se giblje opazovalec B glede na opazovalca A, s faktorjem k.

Vzemimo primer, da se opazovalca A in B v nekem trenutku srečata. V trenutku, ko se srečata, 
oba nastavita svoji uri na čas 0 in si izmenjata svetlobni signal (glej sliko 3 in tekst pod njo). 
Opazovalec A po času t0 odda nov svetlobni signal, ki pripotuje do B-ja in ta ga isti trenutek 
pošlje nazaj A-ju. To dogajanje je prikazano na sliki 3. Prvi signal A-ja B-ju in odboj tega si-
gnala od B-ja nazaj do A-ja se zgodita v istem trenutku na istem mestu. Drugi signal, ki ga A 
po času t0 odda B-ju, in odboj tega signala od B-ja nazaj do A-ja prikazujeta rdeči svetovnici, 
nagnjeni za kot 45° glede na koordinatni osi.

Poiščimo hitrost opazovalca B glede na A. Ta hitrost je enaka kvocientu poti, ki jo opravi B, in 
časa, v katerem opravi to pot. Poiščemo jo v nekaj korakih. 

1.	 Med oddajo prvega signala (ob času t = 0) in drugega signala preteče za opazovalca A čas 
t0; za opazovalca B pa preteče za faktor k drugačen čas, tj. kt0. (Primerjaj to s primerom 
na sliki 2. Pozor: Opazovalca A in B povezujejo svetlobni bliski. Na sliki 3 sta v začetnem 
trenutku opazovalca A in B na istem mestu, na sliki 2 pa ne.)

2.	 Ko preteče za opazovalca B čas kt0 (ko prejme drugi svetlobni blisk opazovalca A in ga ta-
koj odbije nazaj proti opazovalcu A), preteče za opazovalca A za faktor k drugačen čas, tj.  
k · kt0 = k2t0. S slike 3 preberemo, da je ta čas ravno čas, ko opazovalec A ponovno prejme 
drugi signal (ki ga je odposlal ob svojem času t = t0), potem ko se je odbil od B-ja in pri-
potoval k A-ju. 

Slika 2: k-faktor pove, za kolikšen faktor se razlikujeta časa za 
opazovalca A in B. Čas za opazovalca A ne teče enako kakor za 
opazovalca B, ki se glede na A giblje s stalno hitrostjo. Na sliki 
smo na navpično os nanašali »časovno koordinato« y = ct, »gole-
mu« času t0 ustreza časovna koordinata y0 = ct0. 

Faktor k je odvisen 
od relativne hitrosti 
obeh opazovalcev. 
(Če mirujeta drug 
glede na drugega, 
sta njuni svetovnici 
dve navpični črti in 
je očitno, da mora 
biti k = 1.) 
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3.	 Čas, ki preteče za opazovalca A od oddaje drugega signala (ob njegovem času t = t0) 
do ponovnega prejema tega signala, potem ko se je le-ta odbil od B-ja, je (glej sliko 3)  
k2t0 – t0 = (k2 – 1)t0.

4.	 Za opazovalca A je svetlobni curek potreboval za pot »tja in nazaj« (od A-ja do B-ja in nazaj 
od B-ja do A-ja) čas (k2 – 1)t0, za pot od A-ja do B-ja pa polovico tega časa, tj. (k2 – 1)t0, saj 
je svetlobna hitrost v obeh smereh enaka.

5.	 Kako daleč od A-ja je B v trenutku, ko ga doseže drugi svetlobni signal z A-ja? Če bi merili 
oddaljenost med A in B z radarjem (radar oddaja elektromagnetne valove, ki se razširjajo 
s svetlobno hitrostjo c), bi dobili za oddaljenost B-ja od A-ja v trenutku, ko opazovalca B 
doseže drugi svetlobni signal, vrednost c · (k2 – 1)t0. 

6.	 Kolikšen pa je čas, ki ga A pripiše trenutku odboja signala od B-ja? Besedo »pripiše« smo 
uporabili zato, ker gre za čas v točki, ki je nekje drugje kakor opazovalec A in njegova ura. 
To je nekaj drugega kakor meritev časa. Tokrat A pripiše čas na mestu B z uro A. S slike 3 
preberemo, da je čas od srečanja obeh opazovalcev do trenutka, ko B prejme drugi signal, 
enak vsoti časa t0, ko A odda drugi signal, in časa, ki ga drugi signal potrebuje, da pride do 
B-ja (to je (k2 – 1)t0); skupaj t0 + (k2 – 1)t0 = (k2 + 1)t0. 

Hitrost je kvocient poti in časa. Torej se opazovalec B giblje glede na opazovalca A s hitrostjo 

oziroma 

.

Če enačbo (1) »obrnemo«, tj. izrazimo k z v, dobimo odvisnost faktorja k od hitrosti v: 

.

Slika 3: Določitev faktorja k. Opazovalec A v koordinatnem sis-
temu prostora-časa na sliki miruje, opazovalec B pa se glede 
na opazovalca A giblje s stalno hitrostjo. Opazovalca A in B se v 
nekem trenutku srečata (in mesto srečanja izbereta za izhodišče 
koordinatnega sistema). Tedaj oba nastavita svoji uri na čas 0 in 
si izmenjata svetlobni signal. Ker sta takrat na istem mestu, taka 
»izmenjava« signala ne zahteva nič časa. Po času t0 (merjeno z 
uro A) opazovalec A odda drug signal, ki nekoliko pozneje pride 
do opazovalca B. (V diagramu ustreza času t0 »čas« y0 = ct0.) Po 
definiciji faktorja k opazovalec B prejme drugi signal ob času kt0 
po svoji uri oziroma ob »času« ky0. V istem trenutku, ko B sprejme 
drugi svetlobni signal, se svetloba od njega odbije in odpotuje 
nazaj k opazovalcu A. Spet je po definiciji faktorja k in ob po-
moči slike očitno, da prejme opazovalec A signal, ki se je odbil 
od B-ja, ob času k · kt0 = k2t0 (ob »času« k · ky0 = k2y0) po srečanju 
obeh opazovalcev, merjeno z uro A. Po A-jevi meritvi je potekel 
od trenutka, ko je oddal svoj drugi signal proti B-ju, do trenutka, 
ko je zaznal od B-ja odbiti signal, čas k2t0 – t0 = (k2 – 1)t0. To je čas, 
ki ga je drugi svetlobni signal potreboval za pot od A-ja do B-ja 
in nazaj. 

(1)

(2)
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Faktor k pove, kako sta medsebojno umerjeni časovni skali dveh opazovalcev, ki se gibljeta 
eden glede na drugega s stalno hitrostjo v. 

Za tiste bralce, ki so jim Lorentzove transformacije že domače, v Dodatku pokažemo, da se 
rezultat (2) ujema s standardnim rezultatom, ki ga dobimo z njihovo pomočjo. Bralec naj sam 
presodi, katera pot je enostavnejša. 

4.2	 Seštevanje hitrosti 
Kolikšna je hitrost potnika, ki hodi s hitrostjo 6 km/h po hodniku vlaka v smeri gibanja vlaka, 
ki pelje s hitrostjo 40 km/h? Seveda je hitrost potnika glede na zemljo enaka vsoti obeh hitro-
sti, to je 46 km/h. Saj vlak v eni uri prevozi 40 km, potnik v njem prehodi še dodatnih 6 km 
(vlak je zelo dolg!), kar da 46 km v eni uri. In če hodi potnik proti zadnjemu koncu vlaka, je 
njegova hitrost glede na zemljo 34 km/h. Naš sklep temelji na pravilu za seštevanje hitrosti in 
je intuitivno razumljiv. 

Kaj pa če bi se vlak gibal s hitrostjo 250.000 km/s in bi potnik po njem hodil s hitrostjo 100.000 
km/s? Ali bi bila potnikova hitrost glede na zemljo 350.000 km/s? Seveda ne! Saj smo v 2. raz-
delku povedali, da je svetlobna hitrost »mejna« hitrost in da nobeno telo ali signal te hitrosti 
ne more preseči. 

Pravilo za seštevanje hitrosti, ki temelji na naših izkušnjah in ga uporabljamo v vsakdanjem 
življenju, ni točno in dobro velja le pri hitrostih, ki so majhne v primerjavi s svetlobno hitro-
stjo. Pri hitrostih, ki so primerljive s hitrostjo svetlobe, pa je pravilo za seštevanje drugačno, 
kakor smo ga navajeni. 

Posebej nenavadno se seštevajo hitrosti takrat, ko je ena od njih natanko enaka c, svetlobni 
hitrosti. Mislimo si svetlobni vir v laboratoriju, ki se giblje. Ne glede na gibanje laboratorija, 
bo hitrost svetlobnega curka ostala enaka c (glej razdelek 2). Drugače povedano, če hitrosti 
svetlobe dodamo kakršnokoli hitrost, bomo spet dobili le isto hitrost, tj. c.

Kakšno je torej pravilo za seštevanje poljubnih hitrosti, tudi zelo velikih? 

S k-računom brez težav dobimo zanimiv in netrivialen rezultat – relativistično »formulo« za 
seštevanje hitrosti. 

Imejmo tri opazovalce A, B in C. Opazovalec B se giblje s hitrostjo v
AB glede na opazovalca A, 

opazovalec C se giblje s hitrostjo vBC glede na opazovalca B in opazovalec C se giblje s hitrostjo 
vAC glede na opazovalca A. Povežimo njihovo merjenje časov s faktorji k, ki se nanašajo na 
dvojice opazovalcev: faktor k za opazovalca A in B označimo s kAB, faktor k za opazovalca B in 
C označimo s kBC in za opazovalca A in C s kAC (slika 5). 

Opazovalec B izmeri za časovni interval, ki v sistemu A meri t0, vrednost kABt0; opazovalec C 
izmeri za časovni interval, ki v sistemu B meri kABt0, vrednost kBC(kABt0); in seveda izmeri opa-
zovalec C za časovni interval, ki ima v sistemu A vrednost t0, svojo vrednost kACt0. Za časovni 
interval, ki meri v sistemu A t0, mora torej hkrati veljati kBC(kABt0) = kACt0 oziroma 

				             kAC = kABkBC. 	 (3)

Slika 4: Graf faktorja k v odvisnosti od hitrosti (oziroma od v/c).

Pravilo za 
seštevanje hitrosti, 
ki temelji na 
naših izkušnjah in 
ga uporabljamo 
v vsakdanjem 
življenju, ni točno 
in dobro velja le 
pri hitrostih, ki so 
majhne v primerjavi 
s svetlobno 
hitrostjo.
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Toda faktorje k znamo izraziti z medsebojnimi hitrostmi opazovalcev. To nas bo brez poseb-
nih težav, le z nekaj računanja, pripeljalo do slovitega Einsteinovega »zakona za seštevanje 
hitrosti«. 

Da bo manj pisanja, označimo hitrost sistema B glede na sistem A z vAB ter β1 = vAB/c. Izraz 
(2), ki smo ga dobili za Bondijev faktor k, nam potem pove, da je 

				    kAB ≡ k1 = [(1 + β1)/(1 – β1)]1/2.	 (4a)

Če je hitrost sistema C glede na sistem B enaka vBC ter zapišemo β2 = vBC/c, imamo tudi 

				    kBC ≡ k2 = [(1 + β2)/(1 – β2)]1/2.	 (4b)

Označimo končno še hitrost sistema C glede na sistem A z vAC ter pišimo β3 = vAC/c, pa imamo 

				    kAC ≡ k3 = [(1 + β3)/(1 – β3)]1/2. 	 (4c)

Za relacijo (3), k3 = k1k2, 

velja seveda tudi 

k3
2 = k1

2k2
2. 

S pomočjo izrazov (4) prepišemo gornji izraz kot 

				  
.	 (5)

Zaznamujmo desno stran (5) s q =
 

. Iz  dobimo β3 =  
in

			 

. 	 (6)

Pomnožimo (6) v števcu in v imenovalcu s c in izrazimo β1, β2 in β3 s hitrostmi: 

				  
.	 (7)

Namesto navadne klasične formule vAC = vAB + vBC smo za seštevanje hitrosti dobili relativi-
stično »formulo« (7). 

Da bi dobili nekaj občutka za to, koliko se obe formuli razlikujeta, si spet zamislimo vlak in v 
njem potnika, ki hodi proti sprednjemu koncu vlaka. 

Naj najprej vlak vozi glede na zemljo s hitrostjo 0,01 c (to je ogromna hitrost 3000 km/s in 

Slika 5: Sestavljanje faktorjev k za tri opazovalne sisteme A, B in C.



10

takega vlaka (ali rakete) človek še ni naredil). Potnik naj se sprehaja po vlaku s hitrostjo 0,001 
c = 300 km/s. Klasična formula bi dala za hitrost potnika glede na zemljo 3300 km/s. Relati-
vistični izraz (7) nam da praktično enak rezultat 

vAC = (0,01 c + 0,001 c)/(1 + 10-5) = 3300 km/s. 

Klasični in relativistični rezultat se skorajda ne razlikujeta. Razlika med njima je 1,1 · 10-7 c 
= 33 m/s. Hitrost 33 m/s = 120 km/h je v našem vsakdanjem življenju že kar velika hitrost, v 
primerjavi s 3000 km/s ali tudi 300 km/s pa je zanemarljiva. Hitrosti 0,01 c in 0,001 c sta sicer 
za nas ogromni, a sta majhni v primerjavi s svetlobno hitrostjo. Zato nam klasična formula v 
vsakdanjem življenju izvrstno služi. 

Pa vzemimo, da se vlak giblje s hitrostjo 0,5 c, potnik pa hodi po njem s hitrostjo 0,1 c. Kla-
sična vrednost za hitrost potnika glede na zemljo bi bila 0,6 c. Relativistična vrednost (7) pa 
bi bila tokrat 

vAC = (0,5 c + 0,1 c)/(1 + 0,05) = 0,57 c. 

V tem primeru bi bila razlika med pravo (relativistično) in klasično hitrostjo že pet odstotkov, 
kar pa ni več zanemarljivo. V absolutni vrednosti bi dala klasična formula za skoraj 8600 km/s 
preveliko vrednost.

Kaj pa če bi se vlak in potnik gibala vsak s hitrostjo 0,999 c? Tedaj bi se potnik gibal glede na 
zemljo s hitrostjo, ki bi se razlikovala od svetlobne le za 5 · 10-7 c. To je v nasprotju z našimi 
klasičnimi predstavami, po katerih bi se potnik glede na zemljo gibal s hitrostjo 1,998 c. A je 
rezultat smiseln, če pomislimo, da se nobeno telo ne more gibati hitreje od svetlobe. Klasični 
rezultat, da bi se potnik gibal glede na zemljo skoraj z dvojno svetlobno hitrostjo (z 1,998 c), 
je seveda popolnoma napačen.

5	 Sklep 
Teorija relativnosti je še vedno slabo razumljena in nedorečena tudi pri pouku fizike v sre-
dnjih šolah. Po eni strani se zdi privlačna, ker ljudje poznajo nenavadne pojave »podaljšanja 
časa« in »krčenja dolžin«, »paradoks dvojčkov«, nenavadna potovanja na oddaljene zvezde 
in še kaj. Vendar pogosto ni pravega razumevanja teh pojavov. Pojavljajo se ugovori, ki teme-
ljijo na »zdravi pameti«, a so posledica nepopolnega razumevanja teorije. 

V prispevku smo želeli predstaviti k-račun fizika Hermanna Bondija, ki neposredno in po 
našem mnenju intuitivno jasno poveže tek časa v različnih inercialnih opazovalnih siste-
mih. Pomembno je spoznanje, da je posebna teorija relativnosti posledica tega, da mora-
jo različni opazovalci, ki želijo komunicirati med seboj, uporabljati neko komunikacijsko 
sredstvo. Če bi signali potovali z neskončno hitrostjo, ne bi bilo nobene teorije relativnost. A 
najhitrejši signali potujejo od enega opazovalca do drugega s hitrostjo svetlobe c, ki za pot 
med njimi potrati nekaj časa. Posebna teorija relativnosti to upošteva. Pri majhnih hitrostih 
ni opaznih posledic. Pri hitrostih, ki niso majhne v primerjavi s svetlobno hitrostjo, pa pride 
do drastičnih sprememb in za našo »zdravo pamet«, ki nima neposrednih izkušenj s pojavi 
pri zelo velikih hitrostih, je to (vsaj sprva) težko razumljivo. 

Poleg izračuna Bondijevega faktorja k smo predstavili tudi, kako se s pomočjo faktorja k v 
posebni teoriji relativnosti seštevajo hitrosti. 

Verjamemo, da je Bondijev k-račun mogoče uspešno predstaviti v srednji šoli in da se z njim 
razjasni marsikateri dvom glede posebne teorije relativnosti. 
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Dodatek 

Podaljšanje časa z Lorentzovimi transformacijami 
Posebna teorija relativnosti odgovarja na vprašanje, kako teče čas v inercialnih opazovalnih 
sistemih, ki se gibljejo eden glede na drugega in ugotavlja, da ni ne absolutnega časa ne abso-
lutnega prostora.

Lorentzove transformacije povezujejo krajevne in časovne koordinate (oziroma dogodke, glej 
3. razdelek) v dveh inercialnih opazovalnih sistemih A in B, ki se drug glede na drugega 
gibljeta s stalno hitrostjo (v) (Strnad, 1982). Vzamemo, da se sistem B giblje premo, tedaj 
zadošča ena sama krajevna koordinata. Krajevno in časovno koordinato v A zaznamujmo z x 
in t, v B pa z x‘ in t‘. Lorentzove transformacije so (Strnad, 1982)
			   x‘ = γ(x – vt), 	 x = γ(x‘ + vt‘),	 (8a)
			   t‘ = γ(t – vx/c2), 	t = γ(t‘ + vx‘/c2),	 (8b)
zaznamovali smo γ = (1 – β 2)-1/2, β  = v/c.

Zanimamo se za dva posebna dogodka: prvi dogodek (D-1) je dogodek, ko odda A prvi blisk, 
drugi dogodek (D-2) je dogodek, ko B prejme drugi blisk, ki ga A odda v času t0 po prvem 
blisku. V 3. razdelku smo rekli, da dogodek predstavlja točka v prostoru-času, torej vsak dogo-
dek podajata prostorska in časovna koordinata. Poiščimo koordinate dogodkov D-1 in D-2 v 
koordinatnem sistemu A in v koordinatnem sistemu B.	

Ob prvem dogodku izhodišči koordinatnih sistemov A in B sovpadata in v obeh sistemih tedaj 
naravnajo ure na čas 0. Torej sta v sistemu A koordinati dogodka D-1 

x1 = 0, 
t1 = 0 

in tudi v sistemu B sta koordinati prvega dogodka 
x1‘ = 0, 
t1‘ = 0. 

Drugi dogodek je sprejem drugega bliska v izhodišču sistema B. Kje je B (merjeno v sistemu 
A), ko prejme drugi blisk? Od prvega bliska ob času 0 do drugega bliska ob času t0 se sistem B 
oddalji za razdaljo vt0 od A, v je hitrost, s katero se opazovalec B giblje glede na A. Opazovalec 
A ob (svojem) času t0 odda drugi blisk, ki potuje s hitrostjo c in dohiti B po času τ (ki ga za 
zdaj še ne poznamo). V času τ naredi B še dodatno pot vτ. Razdalja B od lege A v trenutku, ko 
B ujame drugi blisk, je torej po eni strani cτ, po drugi strani vt0 + vτ. Iz cτ = v(t0 + τ) dobimo 
τ = vt0/(c – v) = βt0/(1 – β), β = v/c. 

Torej so koordinate drugega dogodka
x2 = cτ = βct0/(1 – β), 

t2 = t0 + τ = t0 + βt0/(1 – β) = t0/(1 – β)
in 
x2‘ = 0 (saj B sprejme blisk tam, kjer je),
t2‘ = ? (ta čas iščemo).

Označimo s t
B
‘ ≡ t2‘ – t1‘ čas, ki v sistemu B preteče med oddajo prvega bliska in prejemom 

drugega bliska. Prva iz Lorentzovih transformacij (8b) pove, da je 

t1‘ = γ(t1 – vx1/c
2) = 0, 

saj je t1 = 0 in x1 = 0, in da je 

t2‘ = γ(t2 – vx2/c
2) = γ[t0/(1 – β) – (v/c2)βct0/(1 – β)] = γt0(1 + β) = t0[(1 + β)/(1 – β)]1/2. 

Torej je 
t

B
‘ = t2‘ – t1‘ = t0[(1 + β)/(1 – β)]1/2 ≡ kt0.

Spet smo dobili Bondijev rezultat (2) oziroma faktor k 

k = [(1 + β)/(1 – β)]1/2.

Katera pot je lažja?

Posebna teorija 
relativnosti odgovarja 
na vprašanje, kako 
teče čas v inercialnih 
opazovalnih sistemih, 
ki se gibljejo eden 
glede na drugega in 
ugotavlja, da ni ne 
absolutnega časa ne 
absolutnega prostora.


